Question

True/False, explain: 1. If G is a finite group and G28, then there is a subgroup...

True/False, explain:
1. If G is a finite group and G28, then there is a subgroup of G of order 2401=74

2. If |G|=19, then G is isomorphic to Z19.

3. If F subset of K is a degree 5 field extension, any element b in K is the root of some polynomial p(x) in F[x]

4. If F subset of K is a degree 5 field extension, viewing K as a vector space over F, Aut(K, F) consists of all F-linear transformations of K.

5. Suppose f in F[x] and F in K is a degree 5 field extension. Then Aut(K, F) permutes the roots of f in K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in...
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in Q is irreducible. 2. Any polynomial f in Q[x] with deg(f)-4 and no roots in Q is irreducible. 3. Zx40 is isomorphic to Zx5 x Zx8 4. If G is a finite group and H<G, then [G:H] = |G||H| 5. If [G:H]=2, then H is normal in G. 6. If G is a finite group and G<S28, then there is a subgroup of G...
(Modern Algebra) Show that every finite subgroup of the multiplicative group of a field is cyclical....
(Modern Algebra) Show that every finite subgroup of the multiplicative group of a field is cyclical. (Hint: consider m as the order of the finite subgroup and analyze the roots of the polynomial (x ^ m) - 1 in field F)
Let F be a field. It is a general fact that a finite subgroup G of...
Let F be a field. It is a general fact that a finite subgroup G of (F^*,X) of the multiplicative group of a field must be cyclic. Give a proof by example in the case when |G| = 100.
True or False? No reasons needed. (e) Suppose β and γ are bases of F n...
True or False? No reasons needed. (e) Suppose β and γ are bases of F n and F m, respectively. Every m × n matrix A is equal to [T] γ β for some linear transformation T: F n → F m. (f) Recall that P(R) is the vector space of all polynomials with coefficients in R. If a linear transformation T: P(R) → P(R) is one-to-one, then T is also onto. (g) The vector spaces R 5 and P4(R)...
(Sage Exploration) In class, we primarily have worked with the field Q and its finite extensions....
(Sage Exploration) In class, we primarily have worked with the field Q and its finite extensions. For each p ∈ Z primes, we can also study the field Z/pZ , which I will also denote Fp, and its finite extensions. Sage understands this field as GF(p). (a) Define the polynomial ring S = F2[x]. (b) Find all degree 2 irreducible polynomials. How many are there? For each, completely describe the corresponding quadratic field extensions of F2. (c) True of false:...
Problem 1. In this problem we work in the finite field 25, i.e. the numbers (mod...
Problem 1. In this problem we work in the finite field 25, i.e. the numbers (mod 5). 1. Show that 2 is a primitive 4-th root of 1. 2. Show that X1-1= (x - 2)(x - 22)(x - 2)(X – 24). 3. Show that g(x) = (x - 2)(X - 4) generates a cyclic code C with d>3. (Hint: invoke a property that we have shown in class.) 4. What is the generating matrix G of the code C given...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with...
Assume that we are working with an aluminum alloy (k = 180 W/moC) triangular fin with a length, L = 5 cm, base thickness, b = 1 cm, a very large width, w = 1 m. The base of the fin is maintained at a temperature of T0 = 200oC (at the left boundary node). The fin is losing heat to the surrounding air/medium at T? = 25oC with a heat transfer coefficient of h = 15 W/m2oC. Using the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT