Question

Solve using reduction of order or variation of parameters 4x2y” + 4xy’ + (4x2 – 1)y...

Solve using reduction of order or variation of parameters

4x2y” + 4xy’ + (4x2 – 1)y = F(x)

y1(x) = x -1/2 sin x     and     y2(x) = x -1/2 cos x

Your answer will come out in terms of integrals involving F(x).

Find a function F(x) for which you can easily calculate the necessary integrals in the answer and do the integral

Homework Answers

Answer #1

If you have any questions please let me know

Please give me up vote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
Solve y’’ – 11y’ + 24y = ex +3x using: Reduction of order V.C superposition Variation...
Solve y’’ – 11y’ + 24y = ex +3x using: Reduction of order V.C superposition Variation of parameters
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
solve the given differential equation by variation of parameters. y”+y=1/cos(x)
solve the given differential equation by variation of parameters. y”+y=1/cos(x)
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1...
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1 y1(x)=x My professor is getting y2(x)=e^x and I don't understand how!
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1...
Solve the 2nd Order Differential Equation using METHOD OF REDUCTION Please don't skip steps! (x-1)y"-xy'+y=0 x>1 y1(x)=x
Solve the differential equation by variation of parameters. y'' + 3y' + 2y = 1 /...
Solve the differential equation by variation of parameters. y'' + 3y' + 2y = 1 / (7 + e^x)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT