Question

The defect rate for your product has historically been about 4.00​%. For a sample size of...

The defect rate for your product has historically been about 4.00​%. For a sample size of 100​, the upper and lower 3​-sigma control chart limits​ are:

UCL Subscript p ​= nothing ​(enter your response as a number between 0 and​ 1, rounded to four decimal​ places).

LCL Subscript p ​=   nothing ​(enter your response as a number between 0 and​ 1, rounded to four decimal​ places)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Pioneer Chicken advertises​ "lite" chicken with​ 30% fewer calories than standard chicken. When the process for​...
Pioneer Chicken advertises​ "lite" chicken with​ 30% fewer calories than standard chicken. When the process for​ "lite" chicken breast production is in​ control, the average chicken breast contains 420 ​calories, and the standard deviation in caloric content of the chicken breast population is 20 calories. Pioneer wants to design an x overbar​-chart to monitor the caloric content of chicken​ breasts, where 25 chicken breasts would be chosen at random to form each sample. ​a) What are the lower and upper...
Random samples of size n = 410 are taken from a population with p = 0.09....
Random samples of size n = 410 are taken from a population with p = 0.09. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round the value for the centerline to 2 decimal places and the values for the UCL and LCL to 3 decimal places.) Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart if samples of 290 are used....
Random samples of size n = 200 are taken from a population with p = 0.08....
Random samples of size n = 200 are taken from a population with p = 0.08. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯chart b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯ chart if samples of 120 are used. c. Discuss the effect of the sample size on the control limits. The control limits have a ___ spread with smaller...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 180 items were found to be defective. (a)What is an estimate of the proportion defective when the process is in control? _________________. (b)What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) ________________. (c)Compute the upper and lower control...
Hour Xbar   R   Hour   Xbar   R   Hour   Xbar R Hour    Xbar R 1   3.35   0.76...
Hour Xbar   R   Hour   Xbar   R   Hour   Xbar R Hour    Xbar R 1   3.35   0.76 7    2.95   0.53   13    3.11   0.80   19   3.41    1.66 2   3.00    1.23 8    2.75    1.13 14    2.73 1.36   20   2.89   1.04 3   3.22    1.38 9    3.12    0.66   15 3.12 1.11   21   2.65   1.08 4   3.39    1.21    10    2.75   1.28    16 2.74 0.50   22   3.38   0.46 5   3.17    1.12   ...
A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent...
A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent of defective items generated by this process is 4.3%. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round your answers to 3 decimal places.) centerline- Upper control limit- Lower control limit- b. An engineer inspects the next batch of 2,200 steel rods and finds that 5.5% are defective. Is the manufacturing process under...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.60 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.58 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.44 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.54 1.3 14 95.22 0.6 15 95.04 0.8 16...