U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto
v. Then write u as the...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto
v. Then write u as the sum of two orthogonal vectors, one in
span{U} and one orthogonal to U
Find the orthogonal projection of u onto the
subspace of R4 spanned by the vectors
v1,...
Find the orthogonal projection of u onto the
subspace of R4 spanned by the vectors
v1, v2 and
v3.
u = (3, 4, 2, 4) ;
v1 = (3, 2, 3, 0),
v2 = (-8, 3, 6, 3),
v3 = (6, 3, -8, 3)
Let (x, y, z, w) denote the
orthogonal projection of u onto the given
subspace. Then, the components of the target orthogonal projection
are
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...