Question

Let I be an interval. Prove that if f is differentiable on I and if the...

Let I be an interval. Prove that if f is differentiable on I and if the derrivative f' be bounded on I then f uniformly continued on I!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.
Let f : R → R be differentiable with derivative f'. Prove that f(x + h)...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h) = f(x) + f'(x)h + o(h), as h → 0.
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
5. Let I be an open interval with a ∈ I and suppose that f is...
5. Let I be an open interval with a ∈ I and suppose that f is a function defined on I\{a} where the limit of f exists as x → a and L = limx→a f(x). Prove that the limit of |f| exists as x → a and |L| = limx→a |f(x)|. Is the converse true? Prove or furnish a counterexample.
if the function f is differentiable at a, prove the function f is also continuous at...
if the function f is differentiable at a, prove the function f is also continuous at a.
let f(x)= /4x-3/ i) find f'(x) ii) find the x-values where f(x) is continuous (interval notation)...
let f(x)= /4x-3/ i) find f'(x) ii) find the x-values where f(x) is continuous (interval notation) iii) find the x-values where f(x) is differentiable (interval notation)
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT