Question

Prove that if f(x) is a continuous function and f(x) is not zero then g(x) =...

Prove that if f(x) is a continuous function and f(x) is not zero then g(x) = 1/f(x) is a continuous function.  

Use the epsilon-delta definition of continuity and please overexplain and check your work before answering.

Homework Answers

Answer #1

I did this example with enough explanation I hope. If you found any difficulty please let me know in comments. I'll make it clear for you. Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part I) Prove that if f and g are continuous at a, then f+g is continuous...
Part I) Prove that if f and g are continuous at a, then f+g is continuous at a using the epsilon-δ definition. Part II) Let a, L ∈ R. Prove that if a ≥ L− ε for all positive, then a ≥ L.
Prove that the function f(x,y) is differentiable at (0,0) by using epsilon-delta method. (1) f(x,y) =...
Prove that the function f(x,y) is differentiable at (0,0) by using epsilon-delta method. (1) f(x,y) = x+y+xy (2) f(x,y) = sin(xy)
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Use each definition of a continuous function to prove that every function f: Z --> R...
Use each definition of a continuous function to prove that every function f: Z --> R is continuous
Using only definition 4.3.1 (continuity), prove that f(x)=x2+3x+4 is continuous on R.
Using only definition 4.3.1 (continuity), prove that f(x)=x2+3x+4 is continuous on R.
1a. Using the e − δ definition of continuity, show that the absolute value function f(x)...
1a. Using the e − δ definition of continuity, show that the absolute value function f(x) = |x| is continuous at every point a. 1b. Use the e−δ defintion of continuity to prove that any linear function f(x) = mx+b (with m, b constants) is continuous at every point a. (You should be able to find a formula for δ in terms of e, and the slope m.)
Prove that if f: X → Y is a continuous function and C ⊂ Y is...
Prove that if f: X → Y is a continuous function and C ⊂ Y is closed that the preimage of C, f^-1(C), is closed in X.
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x...
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x - 1)
Use ε − δ definition to prove that the function f (x) = 2x/3x^2 - 2...
Use ε − δ definition to prove that the function f (x) = 2x/3x^2 - 2 is continuous at the point p = 1.