Question

consider a spring mass system with a damping force but no external force that has the...

consider a spring mass system with a damping force but no external force that has the following equation of motion. Find the damping constant c that gives the critical damping  

x'+cx'+9x=0 x(0)=2 x'(0)=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a horizontal spring-mass vibration system without damping, where the mass is 2 kg, the spring...
Consider a horizontal spring-mass vibration system without damping, where the mass is 2 kg, the spring is 18 N/m, and the external force is a periodic force f(t) = 6sin(3t): a) Write the differential equation modeling the motion of this spring-mass system b) Solve the differential equation in (a). Show Work c) If at the initial time t = 0, the mass is at position 2 m to the right of the equilibrium position and its velocity is 1 m/s...
a mass-spring system is driven by a constant external 16. the mall equals 1, the spring...
a mass-spring system is driven by a constant external 16. the mall equals 1, the spring constant equals 2, and the damping coefficient equals 2. so the motion is given by y"+2y'+2y=16 if the mass is initially located at y(0)=1, with a velocity y'(0)=0 find the equation of its motion
We consider a spring mass system. We use standard international system of units, the mass is...
We consider a spring mass system. We use standard international system of units, the mass is 1kg and the change of magnitude of force |∆Fs| (in unit of Newton, 1N = 1kg ∗ m/s2) from the spring is 9 times the change of length of the spring |∆x|(in meter), i.e |∆Fs| = |9∆x|, the spring is a linear spring with spring constant equal to 3 in Hook’s law. The equilibrium position is at x = 0. When the external forcing...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched 1 m to the left of the equilibrium point then released with initial velocity 0. Assume that m = 3 kg, the damping force is negligible, and there is no external force. Find the position of the mass at any time along with the frequency, amplitude, and phase angle of the motion. Suppose that the spring is immersed in a fluid with damping constant...
when a mass of 2 kg is attached to a spring whose constant is 32 N/m,...
when a mass of 2 kg is attached to a spring whose constant is 32 N/m, it come to rest in the equilibrium position. at a starting time t=0, an external force of y=80e^(-4t)*cos(4t) is applied to the system. find the motion equation in the absence of damping.
Consider a mass is attached to an ideal spring and is moving in SHM. No damping...
Consider a mass is attached to an ideal spring and is moving in SHM. No damping or frictions are considered The system has an angular frequency of 20rad/s and spring constant of 2N/m  (consider the shift angle is zero) Determine the mass of the weight? Write down the acceleration equation in respect of time Sketch on the same axis the displacement, velocity and acceleration
Using the Newton’s second law model for a vibrating mass-spring system with damping and no forcing,...
Using the Newton’s second law model for a vibrating mass-spring system with damping and no forcing, 〖my〗^''+by^'+ky=0, find the equation of motion if m=10 kg, b=40 kg/sec, k=240 kg/sec2, y(0)=1.0, and y^' (0)=0.0 m/sec.
A particular spring has a spring constant of 50 Newton/meters. Suppose a 1/2 kg mass is...
A particular spring has a spring constant of 50 Newton/meters. Suppose a 1/2 kg mass is hung on the spring and is initially sent in motion with an upward velocity of 10 meters per second, 1/2 meter below the equilibrium position. A) Write down the DE that models the motion of this spring. B) Write down the initial conditions. C) Find the equation of motion for the spring. D) Suppose this spring mass system experiences a viscous damping term that...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for the system is 6 N-sec/m. If the mass is moved 12/5 m to the left of equilibrium and given an initial rightward velocity of 62/5 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t)= The damping factor is: The quasiperiod is: The quasifrequency is:
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...