1. Let T = {(1, 2), (1, 3), (2, 5), (3, 6), (4, 7)}. T :...
1. Let T = {(1, 2), (1, 3), (2, 5), (3, 6), (4, 7)}. T : X ->
Y. X = {1, 2, 3, 4}, Y = {1, 2, 3, 4, 5, 6, 7}
a) Explain why T is or is not a function.
b) What is the domain of T?
c) What is the range of T?
d) Explain why T is or is not one-to one?
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A...
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A × A : x < y}
and B = {(x, y) ∈ A × A : |x − y| = 1}.
i. Draw graphs representing L and B.
ii. Determine L ◦ B.
iii. Determine B ◦ B.
iv. Is B transitive? Explain.
let the universal set be U = {1, 2, 3, 4, 5, 6, 7, 8, 9}...
let the universal set be U = {1, 2, 3, 4, 5, 6, 7, 8, 9} with A
= {1, 2, 3, 5, 7} and B = {3, 4, 6, 7, 8, 9}
a.)Find (A ∩ B) C ∪ B
b.) Find Ac ∪ B.
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and...
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and let q = (2,
4, 9, 5, 10, 6, 11, 7, 0, 8, 1, 3) be tone rows. Verify that p =
Tk(R(I(q))) for some k, and find this value of k.
Let ? = ? + 2? + 3? and ? = −4? + 6? + ??,...
Let ? = ? + 2? + 3? and ? = −4? + 6? + ??, where ? represents a
real number.
Express the cross product ? × ? in terms of ? and in component
form, 〈?, ?, ?〉.
Determine the value of ? for which ? × ? is parallel to the
vector ? = 〈15, 3, −7〉.
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an...
Let A = {1, 2, 3, 4, 5, 6}. In each of the following, give an
example of a function f: A -> A with the indicated properties,
or explain why no such function exists.
(a) f is bijective, but is not the identity function f(x) =
x.
(b) f is neither one-to-one nor onto.
(c) f is one-to-one, but not onto.
(d) f is onto, but not one-to-one.
Let X = {1, 2, 3, 4} and Y = {2, 3, 4, 5}. Define f...
Let X = {1, 2, 3, 4} and Y = {2, 3, 4, 5}. Define f : X → Y by
1, 2, 3, 4 → 4, 2, 5, 3. Check that f is one to one and onto and
find the inverse function f -1.
Let A = {0, 3, 6, 9, 12}, B = {−2, 0, 2, 4, 6, 8,...
Let A = {0, 3, 6, 9, 12}, B = {−2, 0, 2, 4, 6, 8, 10, 12}, and C
= {4, 5, 6, 7, 8, 9, 10}.
Determine the following sets:
i. (A ∩ B) − C
ii. (A − B) ⋃ (B − C)