Question

In R^3 consider the following two bases B= { v1=(2,2,-3), v2=(2,2,0), v3=(1,2,4)} and B' = {...

In R^3 consider the following two bases B= { v1=(2,2,-3), v2=(2,2,0), v3=(1,2,4)} and B' = { w1= (1,0,2), w2=(2,1,2), w3=(0,2, -2) }

a) Find the matrix associated to the change of basis from B to B'.

b) If VB= (-1,3,0), then find VB'

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are linear independent or linear deppendent. B. Find the largest possible number of independent vectors among: v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0), v5=(0,1,0,-1), v6=(0,0,1,-1)
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose...
Let S = {v1, v2, v3, v4} be a given basis of R ^4 . Suppose that A is a (3 × 4) matrix with the following properties: Av1 = 0, A(v1 + 2v4) = 0, Av2 =[ 1 1 1 ] T , Av3 = [ 0 −1 −4 ]T . Find a basis for N (A), and a basis for R(A). Fully justify your answer.
Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 =...
Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 = (3, 2, −1) v3 = (3, 5, −2 )   (a) Verify that the general vector u = (x, y, z) can be written as a linear combination of v1, v2, and v3. (Hint : The coefficients will be expressed as functions of the entries x, y and z of u.) Note : This shows that Span{v1, v2, v3} = R3 . (b) Can R3 be...
5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3). (a) Verify that v1,...
5. Let v1 = (1/3,−2/3,2/3), v2 = (2/3,−1/3,−2/3) and v3 = (2/3,2/3,1/3). (a) Verify that v1, v2, v3 is an orthonormal basis of R 3 . (b) Determine the coordinates of x = (9, 10, 11), v1 − 4v2 and v3 with respect to v1, v2, v3.
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where,...
If S is the set of vectors in R^4 (S= {v1, v2, v3, v4, v5}) where, v1 = (1,2,-1,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,-6), v5 = (3,9,7,-6) Find a subset of S that is a basis for the span(S).
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that...
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and v2=(1,3),and let T:R^2-R^3 be linear transformation such that T(v1)=(-1,2,0) And T(v2)=(0,-3,5), find T(2,-3)
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3 into an orthonormal basis, using theGram-Schmidt process and the...
convert the basis V1=(1,-1,0), v2=(0,1,-1), v3=(-1,1,-1)for R^3 into an orthonormal basis, using theGram-Schmidt process and the standard inner product in R^3
Consider the following two ordered bases of R^2: B={〈1,−1〉,〈2,−1〉} C={〈1,1〉,〈1,2〉}. Find the change of coordinates matrix...
Consider the following two ordered bases of R^2: B={〈1,−1〉,〈2,−1〉} C={〈1,1〉,〈1,2〉}. Find the change of coordinates matrix from the basis B to the basis C. PC←B=? Find the change of coordinates matrix from the basis C to the basis B. PB←C=?
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0],...
Consider four vectors v1 = [1,1,1,1], v2 = [-1,0,1,2], v3 = [a,1,0,b], and v4 = [3,2,a+b,0], where a and b are parameters. Find all conditions on the values of a and b (if any) for which: 1. The number of linearly independent vectors in this collection is 1. 2. The number of linearly independent vectors in this collection is 2. 3. The number of linearly independent vectors in this collection is 3. 4. The number of linearly independent vectors in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT