Question

Consider the vector: u1=(1,1,1), u2= (2,-1,1), u3=(3,0,2), u4=(6,0,4) a)Plot the dimension and a basis for W=...

Consider the vector: u1=(1,1,1), u2= (2,-1,1), u3=(3,0,2), u4=(6,0,4)

a)Plot the dimension and a basis for W= span {u1,u2,u3,u4}

b)Does the vector v= (3,3,1) belong to W? justify the answer.

c) Is it true that W= span{ u3,u4} Justify answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the vector u1=(2,0,2), u2=(4,1,-1), u3=( 0,1,-5), u4=(3,0,2) a) Find the dimension and a basis for...
Consider the vector u1=(2,0,2), u2=(4,1,-1), u3=( 0,1,-5), u4=(3,0,2) a) Find the dimension and a basis for U= span{ u1,u2,u3,u4} b) Does the vector u=(2,-1,4) belong to U. Justify! c) Is it true that U = span{ u1,u2,u3} justify the answer!
A): compute projw j if u1=[-7,1,4] u2=[-1,1,-2],w=span{u1,u2}. (u1 and u2 are orthogonal) B): let u1=[1,1,1], u2=1/3...
A): compute projw j if u1=[-7,1,4] u2=[-1,1,-2],w=span{u1,u2}. (u1 and u2 are orthogonal) B): let u1=[1,1,1], u2=1/3 *[1,1,-2] and w=span{u1,u2}. Construct an orthonormal basis for w.
Use Gram-Schmidt process to transform the basis {u1, u2, u3}, where u1=(1,1,1), u2=(1,2,0), u3=(1,0,-1),: a) for...
Use Gram-Schmidt process to transform the basis {u1, u2, u3}, where u1=(1,1,1), u2=(1,2,0), u3=(1,0,-1),: a) for the Euclidean IPS. (IPS means inner product space)
Determine if the vector v is a linear combination of the vectors u1, u2, u3. If...
Determine if the vector v is a linear combination of the vectors u1, u2, u3. If yes, indicate at least one possible value for the weights. If not, explain why. v = 2 4 2 , u1 = 1 1 0 , u2 = 0 1 -1 , u3 = 1 2 -1
write the vector w=(1,-4,13) as a linear combination of u1=(1,2,3), u2=(2,1,1), u3=(1,-1,2)
write the vector w=(1,-4,13) as a linear combination of u1=(1,2,3), u2=(2,1,1), u3=(1,-1,2)
Let B1 = { u1, u2, u3 }, where u1 = (2,?1, 1), u2 = (1,?2,...
Let B1 = { u1, u2, u3 }, where u1 = (2,?1, 1), u2 = (1,?2, 1), and u3 = (1,?1, 0). B1 is a basis for R^3 . A. Find the transition matrix Q ^?1 from the standard basis of R ^3 to B1 . B. Write U as a linear combination of the basis B1 .
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
SSTR=6750 SSE= 6000 Nt =20 Ho: u1=u2=u3=u4 Ha: at least one mean is different At Alpha=.05...
SSTR=6750 SSE= 6000 Nt =20 Ho: u1=u2=u3=u4 Ha: at least one mean is different At Alpha=.05 the null hypothesis: A should be rejected B should not be rejected C was designed incorrectly D none of the above
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 =...
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 = [1 4 −1 1] u3 = [1 0 −1 1] u4 = [2 −1 −2 2] u5 = [1 4 0 1] (a) Explain why these vectors cannot possibly be independent. (b) Form a matrix A whose columns are the ui’s and compute the rref(A). (c) Solve the homogeneous system Ax = 0 in parametric form and then in vector form. (Be sure the...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT