Question

Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s...

  1. Prove that a bipartite simple graph with n vertices must have at most n2/4 edges. (Here’s a hint. A bipartite graph would have to be contained in Kx,n−x, for some x.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
Consider the complete bipartite graph Kn,n with 2n vertices. Let kn be the number of edges...
Consider the complete bipartite graph Kn,n with 2n vertices. Let kn be the number of edges in Kn,n. Draw K1,1, K2,2 and K3,3 and determine k1, k2, k3. Give a recurrence relation for kn and solve it using an initial value.
Prove that a simple outerplane graph of order n has at most 2n-3 edges.
Prove that a simple outerplane graph of order n has at most 2n-3 edges.
Prove that a simple graph with p vertices and q edges is complete (has all possible...
Prove that a simple graph with p vertices and q edges is complete (has all possible edges) if and only if q=p(p-1)/2. please prove it step by step. thanks
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
In lecture, we proved that any tree with n vertices must have n − 1 edges....
In lecture, we proved that any tree with n vertices must have n − 1 edges. Here, you will prove the converse of this statement. Prove that if G = (V, E) is a connected graph such that |E| = |V| − 1, then G is a tree.
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
A simple undirected graph consists of n vertices in a single component. What is the maximum...
A simple undirected graph consists of n vertices in a single component. What is the maximum possible number of edges it could have? What is the minimum possible number of edges it could have? Prove that your answers are correct
Suppose G is a simple, nonconnected graph with n vertices that is maximal with respect to...
Suppose G is a simple, nonconnected graph with n vertices that is maximal with respect to these properties. That is, if you tried to make a larger graph in which G is a subgraph, this larger graph will lose at least one of the properties (a) simple, (b) nonconnected, or (c) has n vertices. What does being maximal with respect to these properties imply about G?G? That is, what further properties must GG possess because of this assumption? In this...
Graph Theory . While it has been proved that any tree with n vertices must have...
Graph Theory . While it has been proved that any tree with n vertices must have n − 1 edges. Here, you will prove the converse of this statement. Prove that if G = (V, E) is a connected graph such that |E| = |V | − 1, then G is a tree.