Question

The folium of descartes is the curve with equation x^3 + y^3 = 3axy where a...

The folium of descartes is the curve with equation x^3 + y^3 = 3axy where a does not equal 0 and is a constant.

a) Show that for any t not equal to 0, 01 the line y=tx intersects the folium at the origin and exactly one other point P. Express the coordinates of P in terms of t to get a parameterization of the folium.

b) Describe the interval of t-values parameterizing the parts of the curve in quadrants I, II, IV.

c) Consider dy/dx as a function of t and find the points with horizontal or vertical tangent.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 ....
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 . (a) Find dy/dx in terms of t. (b) Write the equations of the horizontal tangent lines to the curve (c) Write the equations of the vertical tangent lines to the curve. (d) Using the results in (a), (b) and (c), sketch the curve for −2 ≤ t ≤ 2.
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a....
Consider the parametric equations x = 5 - t^2 , y = t^3 - 48t a. Find dy dx and d 2y dx2 , and determine for what values of t is the curve concave up, and when is it concave down. b. Find where is the tangent line horizontal, and where is it vertical.
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find...
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find the values for t where the tangent lines are horizontal on the parametric curve. For the horizontal tangent lines, you do not need to find the (x,y) pairs for these values of t. Find the values for t where the tangent lines are vertical on the parametric curve. For these values of t find the coordinates of the points on the parametric curve.
Find the exact length of the curve. x = 8 + 9t2, y = 3 +...
Find the exact length of the curve. x = 8 + 9t2, y = 3 + 6t3, 0 ≤ t ≤ 5 Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 6 + ln(t), y = t2 + 1, (6, 2) y = Find dy/dx. x = t 3 + t , y = 3 + t Find the distance traveled by a particle...
1) x = t^3 + 1 , y = t^2 - t , Find an equation...
1) x = t^3 + 1 , y = t^2 - t , Find an equation of the tangent to the curve at the point corresponding to t = 1 2) x = t^2 + 1 , y = 3t^2 + t ,Find a) dy/dx , b) (d^2)y / dx^2 c) For which values of t is the curve concave upward? 3) sketch the curve: r = 1 - 3cos θ 4)A demand curve is given by p = 450/(x...
a) Find the equation of the tangent line to the curve x= 2sin2t, y= 3sint at...
a) Find the equation of the tangent line to the curve x= 2sin2t, y= 3sint at the point where the same. b) Find the points on the curve x= t^2-t+2, y=t^3-3t where the tangent is horizontal.
1.Given that y = x + tan−1 y , find dy dx 2.Determine the equation of...
1.Given that y = x + tan−1 y , find dy dx 2.Determine the equation of the tangent line to the curve y = (2 + x) e −x at the point (0, 2)
[6] The object is on move along the curve (y = x^2) & (z = x^3)...
[6] The object is on move along the curve (y = x^2) & (z = x^3) with a vertical speed, which is constant (dz/dt = 2) find the acceleration and velocity when the object is at point P (2, 4, 8) [7] (a) A plane (z = 2+x) which does intersects the cone (z^2 = x^2 + y^2) in a parabola. Parameterize the parabola using (t = y). [Find f(t)] & [h(t)] where as [r = f(t)i + (t) j...
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a)...
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a) Find the points where the tangent line is horizontal or vertical (indicate which in a text line) (b) Plot the curve parametrized by these equations to confirm. (c) Note that the curve crosses itself at the origin. Find the equation of both tangent lines. (d) Find the length of the loop in the graph and the area enclosed by the loop. 3. Use what...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C is given by c(t) = t i + sin t j + cost k for 0 ≤ t ≤ π.