Question

Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets...

Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets of X. Show that f[∩i∈IAi ] ⊆ ∩i∈I f[Ai ]. Give an example, using two sets A1 and A2, to show that it’s possible for the LHS to be empty while the RHS is non-empty.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let{Ai :i∈I} be a collection of sets indexed by a set I. (a) Prove that if...
Let{Ai :i∈I} be a collection of sets indexed by a set I. (a) Prove that if there exists i0 ∈ I such that Ai ⊆ Ai0 for all i ∈ I, then ∪i∈I Ai = Ai0. (b) Prove that if there exists i0 ∈ I such that Ai0 ⊆ Ai for all i ∈ I, then ∩i∈I Ai = Ai0.
Let A, B be sets and f: A -> B. For any subsets X,Y subset of...
Let A, B be sets and f: A -> B. For any subsets X,Y subset of A, X is a subset of Y iff f(x) is a subset of f(Y). Prove your answer. If the statement is false indicate an additional hypothesis the would make the statement true.
Suppose X and Y are connected subsets of metric space X, the X intersection Y is...
Suppose X and Y are connected subsets of metric space X, the X intersection Y is not empty. show Y union X is connected.
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Let X be a set and A a σ-algebra of subsets of X. (a) A function...
Let X be a set and A a σ-algebra of subsets of X. (a) A function f : X → R is measurable if the set {x ∈ X : f(x) > λ} belongs to A for every real number λ. Show that this holds if and only if the set {x ∈ X : f(x) ≥ λ} belongs to A for every λ ∈ R. (b) Let f : X → R be a function. (i) Show that if...
Let X∼Γ(a1,b) be independent of Y, and suppose W=X+Y∼Γ(a2,b), where a2> a1. ShowY∼Γ(a2−a1,b)
Let X∼Γ(a1,b) be independent of Y, and suppose W=X+Y∼Γ(a2,b), where a2> a1. ShowY∼Γ(a2−a1,b)
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.11   P(A2) = 0.07   P(A3) = 0.05 P(A1 ∪ A2) = 0.15 P(A1 ∪ A3) = 0.14 P(A2 ∪ A3) = 0.1 P(A1 ∩ A2 ∩ A3) = 0.01 (Round your answers to two decimal places.) (a) Given that the system has a type...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f : S → Y be uniformly continuous. (a) Suppose p ∈ S closure and (pn) is a sequence in S with pn → p. Show that (f(pn)) converges in y to some point yp.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT