Question

Make a combined sign diagram for the first and second derivatives of ?(?) that includes all...

Make a combined sign diagram for the first and second derivatives of ?(?) that includes all C#’s, PIP’s, and domain restrictions (vertical asymptotes). Identify all intervals of increasing, decreasing, concave upward, concave downward, relative extrema, and points of inflection. Sketch the graph of ?(?). Label all plotted points on your graph. (with their ordered pairs) 31. ?(?) = (? + ?) (? − ?)^2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the function f(x)=x^5+5x^4-4. Write "none" if there isn't an answer. (a) find all local extrema...
For the function f(x)=x^5+5x^4-4. Write "none" if there isn't an answer. (a) find all local extrema of this function, if any, and increasing and decreasing intervals. Local max:___ Local min:___ Increasing:___ Decreasing:___ (b) Find all the inflection points of this function, if ay. And concave up and concave down intervals. Inflection points:___ concave up:___ concave down:___ (c) Use part a and b to sketch the graph of the function. Must label important points and show proper concavity.
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.
Let g (x) = [(x^2-3)/(x^3)] (a) Determine (if they exist) the vertical and horizontal asymptotes of...
Let g (x) = [(x^2-3)/(x^3)] (a) Determine (if they exist) the vertical and horizontal asymptotes of g. (b) Find the formula for g′ (x) and g′′ (x). (c) Find (if they exist) the local extremes of g. (d) Find (if they exist) the inflection points of g. (e) Determine the intervals where g is increasing, and where g is decreasing. (f) Determine the intervals where g is concave upward, and where g is concave down. (g) Plot the graph of...
Consider the following. (If an answer does not exist, enter DNE.) f '(x) = x2 +...
Consider the following. (If an answer does not exist, enter DNE.) f '(x) = x2 + x − 30 (a) Find the open intervals on which f ′(x) is increasing or decreasing. (Enter your answers using interval notation.) increasing (−12​,∞) decreasing (−∞,−12​) (b) Find the open intervals on which the graph of f is concave upward or concave downward. (Enter your answers using interval notation.) concave upward concave downward (c) Find the x-values of the relative extrema of f. (Enter...
Show a step by step drawn sketch of the function below. Ensure you are finding everything...
Show a step by step drawn sketch of the function below. Ensure you are finding everything you can about the function (ie. intercepts, increasing/decreasing intervals, positive/negative intervals, restrictions, asymptotes, domain, range, end behaviours, max/min values, critical points, points of inflection) Graph the full function in as much detail as possible and show all calculations. y = x - 3x^(1/3)
For the function f(x) =x(x−4)^3 • Find all x-intercepts and find the y-intercept • Find all...
For the function f(x) =x(x−4)^3 • Find all x-intercepts and find the y-intercept • Find all critical numbers, • Determine where the function is increasing and where it is decreasing, • Find and classify the relative extrema, • Determine where the function is concave up and where it is concave down, • Find any inflection points, and Use this information to sketch the graph of the function. • Use this information to sketch the graph of the function.
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of...
Analyze and plot the graph of f(x)= x^4/2 - 2x^3/3. for this, find; 1) domain of f: 2)Vertical asymptotes: 3) Horizontal asymptotes: 4) Intersection in y: 5) intersection in x: 6) Critical numbers 7) intervals where f is increasing: 8) Intervals where f is decreasing: 9) Relatives extremes Relatives minimums: Relatives maximums: 10) Inflection points: 11) Intervals where f is concave upwards: 12) intervals where f is concave down: 13) plot the graph of f on the plane:
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x )...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x ) = 2(4-x2) divided by (x2+4)2 (I was unable to put divide sign) a) On which intervals is increasing or decreasing? b) On which intervals is concave up or down? c) Sketch the graph of f(x) Label any intercepts, asymptotes, relative minima, relative maxima and inflection points.
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x )...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x ) = 2(4-x2) divided by (x2+4) (I was unable to put divide sign) a) On which intervals is increasing or decreasing? b) On which intervals is concave up or down? c) Sketch the graph of below. Label any intercepts, asymptotes, relative minima, relative maxima and inflection points. .
For f(x) = 2x4 - 4x2 + 1 find the open intervals in which the function...
For f(x) = 2x4 - 4x2 + 1 find the open intervals in which the function is increasing and decreasing. Find open intervals where the function is concave up and concave down. Sketch the graph of the function - label all local maximums, all local minimums, and any inflection points.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT