Question

XE is the Cauchy-extension of X that can be identified with the set of limits of...

XE is the Cauchy-extension of X that can be identified with the set of limits of Cauchy sequences composed of elements of X, these limits need not be in X. Find (with proof) the Cauchy-extension of the metric space (Q, d) where d(x, y) = |x − y|. (You may wish to use the fact that any real number x has a decimal expansion. It may also be helpful to show that 10n > n for all n ∈ N.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2)...
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2) = √((a1 − a2)^2 + (b1 − b2)^2 + (r1 − r2)^2 so that S is a metric space. Prove that metric space S is NOT a complete metric space. Give a clear example. Describe points of C\S as limits of the appropriate sequences of circles, where C is the completion of S.
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all...
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all points in X which are limits of sequences contained in E. Prove or disprove the following: (a) L⊆E. (b) L⊆Ē. (c) L̄ ⊆ Ē.
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X...
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X → X and there exists a q∈ (0,1) such that for all x,y ∈ X, we have d(T(x),T(y)) ≤ q∙d(x,y). Let a ∈ X, and define a sequence (xn)n∈Nin X by x1 := a     and     ∀n ∈ N:     xn+1 := T(xn). Prove, for all n ∈ N, that d(xn,xn+1) ≤ qn-1∙d(x1,x2). (Use the Principle of Mathematical Induction.) Prove that (xn)n∈N is a d-Cauchy sequence in...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y ∈ E ⇒ d(x,y) = 1. (a) Show E is a closed and bounded subset of X. (b) Show E is not compact. (c) Explain why E cannot be a subset of Rn for any n.
You can complete this assignment individually or as a group of two people. In this assignment...
You can complete this assignment individually or as a group of two people. In this assignment you will create a ​​Sorted Singly-Linked List​ that performs basic list operations using C++. This linked list should not allow duplicate elements. Elements of the list should be of type ‘ItemType’. ‘ItemType’ class should have a private integer variable with the name ‘value’. Elements in the linked list should be sorted in the ascending order according to this ‘value’ variable. You should create a...
Plagiarism Certification Tests for Undergraduate College Students and Advanced High School Students These tests are intended...
Plagiarism Certification Tests for Undergraduate College Students and Advanced High School Students These tests are intended for undergraduate students in college or those under 18 years of age. Read these directions carefully! The below test includes 10 questions, randomly selected from a large inventory. Most questions will be different each time you take the test, You must answer at least 9 out of 10 questions correctly to receive your Certificate. You have 40 minutes to complete each test, and you...
Please summarize the below article in approximately 100 words: Monumental function in British Neolithic burial practices...
Please summarize the below article in approximately 100 words: Monumental function in British Neolithic burial practices Ian Kinnes The high-risk rate of survival for the non-megalithic series of Neolithic funerary monuments, recently re-emphasized by Piggott (1973: 34), introduces a further variable into the deductive study of burial practices. In Britain and Europe the overall distribution of monumental forms present both lacunae and a marked preponderance of cairns over earthen mounds which are in ill accord with the known or predicted...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From the April 2004 Issue Save Share 8.95 In 1991, Progressive Insurance, an automobile insurer based in Mayfield Village, Ohio, had approximately $1.3 billion in sales. By 2002, that figure had grown to $9.5 billion. What fashionable strategies did Progressive employ to achieve sevenfold growth in just over a decade? Was it positioned in a high-growth industry? Hardly. Auto insurance is a mature, 100-year-old industry...
1. What is an ISP (Integrated Service Provider) for supply chains? (1 point) A. A consultant...
1. What is an ISP (Integrated Service Provider) for supply chains? (1 point) A. A consultant agency which integrates the supply chain for companies B. A 2 PL or a 3PL, but not a 4PL C. A company supplying transportation and warehousing services D. A logistics service company specialized in suppling VAS (value added services) 2. What characterizes a 4 PL? (1 point) A. They are non-asset based and provides integrated services primarily supplied by asset based providers, for example...
Please read the article and answear about questions. Determining the Value of the Business After you...
Please read the article and answear about questions. Determining the Value of the Business After you have completed a thorough and exacting investigation, you need to analyze all the infor- mation you have gathered. This is the time to consult with your business, financial, and legal advis- ers to arrive at an estimate of the value of the business. Outside advisers are impartial and are more likely to see the bad things about the business than are you. You should...