Question

Let T be a 1-1 linear transformation from a vector space V to a vector space...

Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Let T be a linear transformation that is one-to-one, and u, v be two vectors that...
Let T be a linear transformation that is one-to-one, and u, v be two vectors that are linearly independent. Is it true that the image vectors T(u), T(v) are linearly independent? Explain why or why not.
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is a linear transformation from V to W and suppose also that {T(u), T(v), T(w)} is a basis for W. Prove from the definitions that T is both 1-1 and onto.
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let T: U--> V be a linear transformation. Prove that the range of T is a...
Let T: U--> V be a linear transformation. Prove that the range of T is a subspace of W
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
let T:V to W be a linear transdormation of vector space V and W and let...
let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n