Question

7. Prove that for all n ∈ N, if n ≥ 12 then there are k,...

7. Prove that for all n ∈ N, if n ≥ 12 then there are k, ` ∈ N such that 4k + 5` = n. (Hint: use strong induction on the set {n ∈ N : n ≥ 12}, but first prove the result directly for n = 12, 13, 14, and 15.

Homework Answers

Answer #1

By induction if n 12 then there are k, y such that n= 4k+5y

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove by induction that 7 + 11 + 15 + … + (4n + 3) =...
Prove by induction that 7 + 11 + 15 + … + (4n + 3) = ( n ) ( 2n + 5 ) Prove by induction that 1 + 5 + 25 + … + 5n-1 = ( 1/4 )( 5n – 1 ) Prove by strong induction that an = 3 an-1 + 5 an-2 is even with a0 = 2 and a1 = 4.
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.
Use mathematical induction to prove the solution of problem T(n) = 9T(n/3) + n, T(n) =...
Use mathematical induction to prove the solution of problem T(n) = 9T(n/3) + n, T(n) = _____________________________. is correct (Only prove the big-O part of the result. Hint: Consider strengthening your inductive hypothesis if failed in your first try.)
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
Prove by induction on n that 13 | 2^4n+2 + 3^n+2 for all natural numbers n.
5. Use strong induction to prove that for every integer n ≥ 6, we have n...
5. Use strong induction to prove that for every integer n ≥ 6, we have n = 3a + 4b for some nonnegative integers a and b.
Use induction to prove 1=1 3 + 5 = 23 7 + 9 + 11 =...
Use induction to prove 1=1 3 + 5 = 23 7 + 9 + 11 = 33 13 + 15 + 17 + 19= 43 And so on
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n...
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n ≥ 1.
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n...
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n >= 0.
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.