Question

.1.) Modelling using second order differential equations a) Find the ODE that models of the motion...

.1.) Modelling using second order differential equations

a) Find the ODE that models of the motion of the dumped spring mass system with mass m=1, damping coefficient c=3, and spring constant k=25/4 under the influence of an external force F(t) = cos (2t).

b) Find the solution of the initial value problem with x(0)=6, x'(0)=0.

c) Sketch the graph of the long term displacement of the mass m.

Homework Answers

Answer #1

Doubt in any step then comment below.. i will explain you..

.

please thumbs up for this solution...thanks..

.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, and the entire system is immersed in a liquid that imparts a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?)...
Differential Equations A spring is stretched 6in by a mass that weighs 8 lb. The mass...
Differential Equations A spring is stretched 6in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.25 lb· s/ft and is acted on by an external force of 2cos(2t) lb. (a) Find position u(t) of the mass at time t (b) Determine the steady-state response of this system Assume that g = 32 ft/s2
. Write and solve a differential equation that models the motion of a spring whose mass...
. Write and solve a differential equation that models the motion of a spring whose mass is 2a, spring constant b, and damping a, where the numbers a is 3, b is 6. Assume that the initial position is y = 1 and initial velocity is y 0 = −1. Write your solution as a single, phase-shifted cosine function.
5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′...
5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c): (a) Is there damping in the system? Why or why not? (b) Is there resonance in the system? Why or why not? (c) Solve the ODE.
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x...
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x + ω2x = F0 cos(γt) dt2 where F0 and ω ̸= γ are constants. Without worrying about those constants, answer the questions (a)–(b). (a) Show that the general solution of the given ODE is [2 pts] x(t) := xc + xp = c1 cos(ωt) + c2 sin(ωt) + (F0 / ω2 − γ2) cos(γt). (b) Find the values of c1 and c2 if the...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion. 2. A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to times the...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is...
Solve the following differential equations. A spring has a constant of 4 N/m. The spring is hooked a mass of 2 kg. Movement takes place in a viscous medium that opposes resistance equivalent to instantaneous speed. If the system is subjected to an external force of (4 cos(2t) - 2 sin(2t)) N. Determine: a. The position function relative to time in the transient state or homogeneous solution b. Position function relative to time in steady state or particular solution c....
differential equations: a 2kg mass is placed on a spring with k=8. at t=0, the system...
differential equations: a 2kg mass is placed on a spring with k=8. at t=0, the system is set in motion from its equilibrium position by an external force given by 2cos(wt) where w is a positive constant. for which value of w, if any, will the system have resonance?
DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10...
DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm above equilibrium and given an upward velocity of .25 m/s. Find and graph its displacement for t > 0. Find the frequency, period, amplitude, and phase angle of the motion.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT