Question

For the curve x = sint - tcost, y = cost + tsint, z = t2...

For the curve x = sint - tcost, y = cost + tsint, z = t2

find the arc length between (0, 1, 0) and (-2π, 1, 4π2)

I have gotten down to tsqrt(5) but how am I supposed to assign the bounds given 3 variables in space and not only 2?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the length of the curve r(t)=(tsint+cost)i+(tcost-sint)j from t=sqrt(2) to 2
find the length of the curve r(t)=(tsint+cost)i+(tcost-sint)j from t=sqrt(2) to 2
determine all horizontal and vertical tangent lines if any x=tsint+cost, y=sint-tcost
determine all horizontal and vertical tangent lines if any x=tsint+cost, y=sint-tcost
(a) On a separate sheet of paper, sketch the parameterized curve x=tcost, y=tsint for 0≤t≤4π. Use...
(a) On a separate sheet of paper, sketch the parameterized curve x=tcost, y=tsint for 0≤t≤4π. Use your graph to complete the following statement: At t=6, a particle moving along the curve in the direction of increasing t is moving and (b) By calculating the position at t=6 and t=6.01, estimate the speed at t=6. speed ≈ (c) Use derivatives to calculate the speed at t=6 and compare your answer to part (b). speed =
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
For the given parametrized curve C, find the area above the x-y plane that is under...
For the given parametrized curve C, find the area above the x-y plane that is under C (using line integrals) C: r(t) = <3 cost, 3 sint, 2t> for 0 ≤ t ≤ 2π
The curve given by the parametric equations of x = 1-sint, y = 1-cos t ,...
The curve given by the parametric equations of x = 1-sint, y = 1-cos t , Calculate the volume of the rotational object formed by rotating the x axis use of the parts between t = 0 and t = π / 2. Please solve this question carefully , clear and step by step.I will give you a feedback and thumb up if it is correct.
2. Rotate the semicircle of radius 2 given by y = √(4 − x^2) about the...
2. Rotate the semicircle of radius 2 given by y = √(4 − x^2) about the x-axis to generate a sphere of radius 2, and use this to calculate the surface area of the sphere. 3. Consider the curve given by parametric equations x = 2 sin(t), y = 2 cos(t). a. Find dy/dx b. Find the arclength of the curve for 0 ≤ θ ≤ 2π. 4. a. Sketch one loop of the curve r = sin(2θ) and find...
Find the exact length of the curve. x = 8 + 9t2, y = 3 +...
Find the exact length of the curve. x = 8 + 9t2, y = 3 + 6t3, 0 ≤ t ≤ 5 Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 6 + ln(t), y = t2 + 1, (6, 2) y = Find dy/dx. x = t 3 + t , y = 3 + t Find the distance traveled by a particle...
Find the arc length of the curve below on the given interval. Y = x^3+1/4x on...
Find the arc length of the curve below on the given interval. Y = x^3+1/4x on [1​,4​] I know the correct answer is 339/16, but I don't know how to get there
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t <...
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t < ∞. (a) Find all of the points where the tangent line is vertical. (b) Find d2y/dx2 at the point (1, 4). (c) Set up an integral for the area under the curve from t = −2 to t = −1. (d) Set up an integral for the length of the curve from t=−1 to t=1.