Question

Let n be an integer. Prove that if n is a perfect square (see below for...

Let n be an integer. Prove that if n is a perfect square (see below for the definition) then n + 2 is not a perfect square. (Use contradiction) Definition : An integer n is a perfect square if there is an integer b such that a = b 2 . Example of perfect squares are : 1 = (1)2 , 4 = 22 , 9 = 32 , 16, · ·

Use Contradiction proof method

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that a positive integer n, n > 1, is a perfect square if and only...
Prove that a positive integer n, n > 1, is a perfect square if and only if when we write n = P1e1P2e2... Prer with each Pi prime and p1 < ... < pr, every exponent ei is even. (Hint: use the Fundamental Theorem of Arithmetic!)
Definition of Even: An integer n ∈ Z is even if there exists an integer q...
Definition of Even: An integer n ∈ Z is even if there exists an integer q ∈ Z such that n = 2q. Definition of Odd: An integer n ∈ Z is odd if there exists an integer q ∈ Z such that n = 2q + 1. Use these definitions to prove the following: Prove that zero is not odd. (Proof by contradiction)
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
Prove that there is no integer which is a perfect square and is a multiple of...
Prove that there is no integer which is a perfect square and is a multiple of 2, but is not a multiple of 4.
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Prove that there is no positive integer n so that 25 < n2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n2 < 36. Prove this by directly proving the negation. Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides, or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4)....
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4). (/≡ means not congruent to) b) Prove: No integer in the sequence 11, 111, 1111, 11111, 111111, . . . is the square of an integer.
.Prove that for all integers n > 4, if n is a perfect square, then n−1...
.Prove that for all integers n > 4, if n is a perfect square, then n−1 is not prime.
Prove let n be an integer. Then the following are equivalent. 1. n is an even...
Prove let n be an integer. Then the following are equivalent. 1. n is an even integer. 2.n=2a+2 for some integer a 3.n=2b-2 for some integer b 4.n=2c+144 for some integer c 5. n=2d+10 for some integer d
1) Use Strong Induction to show that for each n ≥ 1, 10^n may be written...
1) Use Strong Induction to show that for each n ≥ 1, 10^n may be written as the sum of two perfect squares. (A natural number k is a perfect square if k = j 2 for some natural number j. These are the numbers 1, 4, 9, 16, . . . .) 2)Show that if A ⊂ B, A is finite, and B is infinite, then B \ A is infinite. Hint: Suppose B \ A is finite, and...