Question

f:R2 to R2 is a linear transformation so that f(1,4)=(10,11) and f(8,1)=(18,-36). Find the determinant of...

f:R2 to R2 is a linear transformation so that f(1,4)=(10,11) and f(8,1)=(18,-36). Find the determinant of the matrix of f.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. f:R2 to R2 is a linear transformation so that f(1,2)=(16,4) and f(8,1)=(38,-43). Find f(4,-2). 2....
1. f:R2 to R2 is a linear transformation so that f(1,2)=(16,4) and f(8,1)=(38,-43). Find f(4,-2). 2. f:R2 to R2 is a linear transformation so that f(1,4)=(32,15) and f(7,1)=(35,-3). Find the determinant of the matrix of f.
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun-...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun- terclockwise by 60◦, then reflect across the line y = x, then scale vectors by a factor of 5”. Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise by 60 degrees, then reflect across the line y = x, then scale vectors by a factor of 5". Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
f is a transformation of the plane so that f(x,y)=(a⋅x+b⋅y,c⋅x+d⋅y) for some symmetric matrix M=[[a,b],[c,d]]. It...
f is a transformation of the plane so that f(x,y)=(a⋅x+b⋅y,c⋅x+d⋅y) for some symmetric matrix M=[[a,b],[c,d]]. It is known that f(1,1)=(10,0) and f(8,1)=(52,28). Find the matrix M.
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Find the standard matrix for the linear transformation f(a, b, c, d)=(b-c+d, 2b-3d). Find the standard...
Find the standard matrix for the linear transformation f(a, b, c, d)=(b-c+d, 2b-3d). Find the standard matrix for the linear transformation that flips the xy plane over the y axis and rotates it by π/4 radians CCW.
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
. In this question we will investigate a linear transformation F : R 2 → R...
. In this question we will investigate a linear transformation F : R 2 → R 2 which is defined by reflection in the line y = 2x. We will find a standard matrix for this transformation by utilising compositions of simpler linear transformations. Let Hx be the linear transformation which reflects in the x axis, let Hy be reflection in the y axis and let Rθ be (anticlockwise) rotation through an angle of θ. (a) Explain why F =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT