Question

find any vectors which are orthogonal to the vector <2,5,-3>

find any vectors which are orthogonal to the vector <2,5,-3>

Homework Answers

Answer #1

Any vector (x,y,z) which are orthogonal to the vector <2,5,-3>, their dot product is 0.

Thus, we get:

2x + 5y - 3z = 0

So,

.

Thus, Any vector (x,y,z) which are orthogonal to the vector <2,5,-3> is given by:

where x and y can take any value.

For example, putting y = 1, y = 1:

the vector

i.e.,

< - 1, 1, 1> is orthogonal to the vector <2,5,-3>

because the dot product:

(-1) X 2   + 1 X 5   + 1 X (-3)

= - 2 + 5 - 3 = 0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find any two vectors which are orthogonal to the bector <2,5,-3>
Find any two vectors which are orthogonal to the bector <2,5,-3>
Find the angle theta between vectors u=(5,6) and v=(-8,7). Find a unit vector orthogonal to v.
Find the angle theta between vectors u=(5,6) and v=(-8,7). Find a unit vector orthogonal to v.
What does it mean if a set of basis vectors is complete? a. The only vector...
What does it mean if a set of basis vectors is complete? a. The only vector that is orthogonal to every basis vector is the 0 vector b. The inner product of any two basis vectors is 0 I was thinking it was B but how would it be justified
Let A be a 2x2 matrix 6 -3 -4 2 first, find all vectors V so...
Let A be a 2x2 matrix 6 -3 -4 2 first, find all vectors V so the distance between AV and the unit basis vector e_1 is minimized, call this set of all vectors L. Second, find the unique vector V0 in L such that V0 is orthogonal to the kernel of A. Question: What is the x-coordinate of the vector V0 equal to. ?/? (the answer is a fraction which the sum of numerator and denominator is 71)
Show complete solution. 1. Find two unit vectors that are parallel to the ?? −plane and...
Show complete solution. 1. Find two unit vectors that are parallel to the ?? −plane and are orthogonal to the vector ? = 3? − ? + 3?.
Find two unit vectors orthogonal to both given vectors. i + j + k,   3i +...
Find two unit vectors orthogonal to both given vectors. i + j + k,   3i + k < _ , _ , _ > (smaller i-value) < _ , _ , _ > (larger i-value)
Find a unit vector orthogonal to <1,3,-1> and <2,0,3>
Find a unit vector orthogonal to <1,3,-1> and <2,0,3>
Find two unit vectors orthogonal to ?=〈−4,4,5〉a=〈−4,4,5〉 and ?=〈4,0,−4〉b=〈4,0,−4〉 Enter your answer so that the first...
Find two unit vectors orthogonal to ?=〈−4,4,5〉a=〈−4,4,5〉 and ?=〈4,0,−4〉b=〈4,0,−4〉 Enter your answer so that the first vector has a positive first coordinate
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
Prove that the orthogonal projection on the span of vectors that are not orthogonal can be...
Prove that the orthogonal projection on the span of vectors that are not orthogonal can be reduced to solving normal equations. Please give an example whatever you like.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT