Question

Suppose S ⊂ R is nonempty and M is an upper bound for S. Show M...

Suppose S ⊂ R is nonempty and M is an upper bound for S. Show M = sup S if and
only if for every Ɛ > 0, there exists x ∈ S so that x > M − Ɛ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii)...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8. That is, let F be an ordered field and x, y,z ∈ F. Prove If x < 0 and y < z, then xy > xz. Let F be an ordered field and x, y,z,w ∈ F. Then: If x < 0 and y < z, then xy > xz. Exercise 1.1.5: Let S be an ordered set. Let A ⊂...
Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A +...
Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A + β = {a + β : a ∈ A} Prove that A + β has a supremum and sup(A + β) = sup(A) + β.
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ?...
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ? → R^? and ? : ? → R^? . Let ℎ : ? × ? → R ?+? be defined by ℎ(u, v) = (?(u), ?(v)). If ? is continuous at x ∈ ? and ? is continuous at y ∈ ? , then show that ℎ is continuous at (x, y) ∈ ? × ? . Hint: Note that for any vectors z...
Let S and T be nonempty subsets of R with the following property: s ≤ t...
Let S and T be nonempty subsets of R with the following property: s ≤ t for all s ∈ S and t ∈ T. (a) Show that S is bounded above and T is bounded below. (b) Prove supS ≤ inf T . (c) Given an example of such sets S and T where S ∩ T is nonempty. (d) Give an example of sets S and T where supS = infT and S ∩T is the empty set....
Using the completeness axiom, show that every nonempty set E of real numbers that is bounded...
Using the completeness axiom, show that every nonempty set E of real numbers that is bounded below has a greatest lower bound (i.e., inf E exists and is a real number).
Let S be a nonempty set in Rn, and its support function be σS = sup{...
Let S be a nonempty set in Rn, and its support function be σS = sup{ <x,z> : z ∈ S}. let conv(S) denote the convex hull of S. Show that σS (x)= σconv(S) (x), for all x ∈ Rn
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Let R be a ring. Show that R[x] is a finitely generated R[x]-module if and only...
Let R be a ring. Show that R[x] is a finitely generated R[x]-module if and only if R={0}. Show that Q is not a finitely generated Z-module.
Let (X , X) be a measurable space. Show that f : X → R is...
Let (X , X) be a measurable space. Show that f : X → R is measurable if and only if {x ∈ X : f(x) > r} is measurable for every r ∈ Q.
. Let M be an R-module; if me M let 1(m) = {x € R |...
. Let M be an R-module; if me M let 1(m) = {x € R | xm = 0}. Show that 1(m) is a left-ideal of R. It is called the order of m. 17. If 2 is a left-ideal of R and if M is an R-module, show that for me M, λm {xm | * € 1} is a submodule of M.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT