Question

A mass weighing 16 lbs is attached to a 6 ft long spring. At equilibrium, the...

A mass weighing 16 lbs is attached to a 6 ft long spring. At equilibrium, the spring measures 14 ft. The mass is initially released from rest at the point 1 ft below the equilibrium position and at t=pi the mass is struck by the sharp blow of 2*sqrt(3) lbs.

a. Using laplace transform, determine the displacement y(t)

b. Graph y(t)

Homework Answers

Answer #1

and

Thus,

So

Taking Laplace transform we get

and

So we have

So

Taking inverse Laplace transform we get

as the required displacement function

b) Graph is below:

Hope this was helpful. Please do leave a positive rating if you liked this answer. Thanks and have a good day!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to sqrt(2) times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The...
A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 12 ft/s. Determine the time at which the mass passes through the equilibrium position. (Use g = 32 ft/s2 for the acceleration due to gravity.) s Find the time after the mass...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = pi/12, pi/8, pi/6, pi/4, and 9pi/32 s. Use g = 32 ft/s^2 for the acceleration due to gravity. (b) what is the velocity of the mass when t = 3pi/16 s?
A mass weighing 24 pounds attached to the end of the spring and stretches it 4...
A mass weighing 24 pounds attached to the end of the spring and stretches it 4 inches. The mass is initially released from rest from a point 3 inches above the equilibrium position with a downward velocity of 2 ft/sec. Find the equation of the motion?  
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
If a mass weighing 40 lbs stretches a spring 6 inches what is the spring constant?...
If a mass weighing 40 lbs stretches a spring 6 inches what is the spring constant? If the mass has a velocity of 4 ft/sec and this results in a viscous resistance of 68 lbs what is the damping coefficient? Assume 32lb=1 slug32lb=1 slug   1. suppose the object is displaced upward 8 inches from equilibrium and released. Create an ODE in terms of the object's displacement, u(t)u(t) , in feet after tt  seconds and its derivatives and solve for u(t)u(t) .
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end...
A coil spring is suspended from the ceiling, a 16-lb weight is attached to the end of it, and the weight then comes to rest in its equilibrium position. The mass is in a medium that exerts a viscous resistance of 8 lb when the mass has a velocity of 1 ft/s. It is then pulled down 12 in. below its equilibrium position and released with an initial velocity of 2 ft/sec, directed upward. (a)   Use the Laplace transform to determine...
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released...
Suppose a mass weighing 64 lb stretches a spring 2 ft. If the weight is released from rest from 2 ft below the equilibrium position, find the equation of motion x(t) (using Laplace transforms) if an impressed force f(t) = 2 sint acts on the system for 0≤t≤2πand is then removed. Ignore any damping forces.
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT