Question

solve the heat equation for a semi-infinite rod whose lateral surfaces are insulated and for which...

solve the heat equation for a semi-infinite rod whose lateral surfaces are insulated and for which u(x,0)=u0 for x>0, u(0,t)=u1 for t>0, and lim as x approches infinity u(x,t)=u0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the conduction of heat in a rod 60 cm in length whose ends are maintained...
Consider the conduction of heat in a rod 60 cm in length whose ends are maintained at 0°C for all t > 0. Find an expression for the temperature u(x, t) if the initial temperature distribution in the rod is the given function. Suppose that α2 = 1. u(x, 0) = 0,      0 ≤ x < 15, 90,      15 ≤ x ≤ 45, 0,      45 < x ≤ 60
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) =...
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) = 0 u(x, 0) = x − x ^3 (Provide all the details of separation of variables as well as the needed Fourier expansions.)
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x...
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x < ∞ u|t=0 = g(x) ux|x=0 = h(t) 2. g(x) = 1 if x < 1 and 0 if x ≥ 1 h(t) = 0; for k = 1/2
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .
Use the Fourier sine transform to derive the solution formula for the heat equation ut =...
Use the Fourier sine transform to derive the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x).
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Find the function whose derivative is given (i.e. solve each differential equation). Note: E>G. Answers: A,B,D,E,F,G...
Find the function whose derivative is given (i.e. solve each differential equation). Note: E>G. Answers: A,B,D,E,F,G a) dy/dx=6x^2. y(x)=Ax^B + C. b) du/dt=8t(t^2 + 2). u(t)=Dt^E + Ft^G + C. ans:6