Question

Prove: If (a, a+1, a+2) is a Pythagorean triple, then a= 3

Prove: If (a, a+1, a+2) is a Pythagorean triple, then a= 3

Homework Answers

Answer #1

Please note that conventionally number in a Pythagorean triplet are always positive. Since, a triangle cannot have any side of negative length.

Let (a,a+1,a+2) be a Pythagorean triplet.

Then, by Pythagoras Property that is where c is the longest side, we have,

Solving this equation :

Since, a cannot be negative, a must be 3.

Therefore the triplet becomes (3,4,5).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: If (a,b,c) is a primitive Pythagorean triple, then either a or b is divisible by...
Prove: If (a,b,c) is a primitive Pythagorean triple, then either a or b is divisible by 3.
prove that in any primitive pythagorean triple (a,b,c), abc is a multiple of 30
prove that in any primitive pythagorean triple (a,b,c), abc is a multiple of 30
The table of exercise 1 suggests that one of the numbers in any primitive Pythagorean triple...
The table of exercise 1 suggests that one of the numbers in any primitive Pythagorean triple is divisible by 4, one is divisible by 3 and one is divisible by 5. Please Prove this
Prove: Let (a,b,c) be a primitive pythagorean triple. then we have the following 1. gcd(c-b, c+b)...
Prove: Let (a,b,c) be a primitive pythagorean triple. then we have the following 1. gcd(c-b, c+b) =1 2. c-b and c+b are squares
In class we proved that if (x, y, z) is a primitive Pythagorean triple, then (switching...
In class we proved that if (x, y, z) is a primitive Pythagorean triple, then (switching x and y if necessary) it must be that (x, y, z) = (m2 − n 2 , 2mn, m2 + n 2 ) for some positive integers m and n satisfying m > n, gcd(m, n) = 1, and either m or n is even. In this question you will prove that the converse is true: if m and n are integers satisfying...
Prove Pythagorean Theorem a) Show at least 3 different proves if the Pythagorean Theorem b) Pythagorean...
Prove Pythagorean Theorem a) Show at least 3 different proves if the Pythagorean Theorem b) Pythagorean triples with applications: indirect measurements and mental math problems
Let a, b, c be natural numbers. We say that (a, b, c) is a Pythagorean...
Let a, b, c be natural numbers. We say that (a, b, c) is a Pythagorean triple, if a2 + b2 = c2 . For example, (3, 4, 5) is a Pythagorean triple. For the next exercises, assume that (a, b, c) is a Pythagorean triple. (c) Prove that 4|ab Hint: use the previous result, and a proof by con- tradiction. (d) Prove that 3|ab. Hint: use a proof by contradiction. (e) Prove that 12 |ab. Hint : Use the...
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive...
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive Pythagorean triple (x, y, z) containing y. (b) Prove that if x = 2k+1 is any odd positive integer greater than 1, then there exists a primitive Pythagorean triple (x, y, z) containing x. (c) Find primitive Pythagorean triples (x, y, z) for each of z = 25, 65, 85. Then show that there is no primitive Pythagorean triple (x, y, z) with z...
Please answer the following in FULL detail! Is there a Pythagorean triple consisting of three Fibonacci...
Please answer the following in FULL detail! Is there a Pythagorean triple consisting of three Fibonacci numbers? Give an example if there is one, or a proof if there isn't.
Prove the Pythagorean Theorem using Bhaskara's approach.
Prove the Pythagorean Theorem using Bhaskara's approach.