Question

Air is compressed by a 46-kW compressor from P1 to P2. The air temperature is maintained...

Air is compressed by a 46-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process as a result of heat transfer to the surrounding medium at 20°C. Determine the rate of entropy change of the air.

The rate of entropy change of the air is  kW/K.

Homework Answers

Answer #1

If you have any questions please let me know

Please give me up vote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Air was compressed (polytropic process) from p1= 100kPa and T1= 293Kto p2= 0.3MPa and v2=0.2803m3/kg. The...
Air was compressed (polytropic process) from p1= 100kPa and T1= 293Kto p2= 0.3MPa and v2=0.2803m3/kg. The isentropic exponent of the gas and specific gas constant are 1.4 and 287 J/(kgK), respectively. Determine (a) polytropic exponent, (b) heat and work of this process, (c) change of internal energy, (d) change of entropy of air,if mass of air is 2kgand air can be treated as ideal gas.Additionally,(e) draw the process on the p-v and T-s diagrams.You can round temperature to one decimal...
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃...
There is an air compressor. The air temperature and pressure flowing into the compressor are 20℃ and 80kPa. At the outlet of the compressor, the pressure is 800 kPa and the temperature is 200℃. When the required power of the compressor is 400kW, find the heat rate (Q)[kW]. Compressor outlet inner diameter is 10cm, flow speed is 20m/s.
3. Air with 100 kPa, 300 K flows into the insulating compressor with a flow rate...
3. Air with 100 kPa, 300 K flows into the insulating compressor with a flow rate of 2 kg/s, compressed to 1000 kPa and then discharged to the exit. The back entropy efficiency of the compressor is 82%. The gas constant of the ideal gas is the air, and the meanness of the air is , The mean ratio is k=1.4. Ignore kinetic energy and position energy. 1) Draw a schematic diagram and a T-s plot of the compressor. 2)...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and...
Air at 100 kPa and 10°C enters a compressor and is brought to 1000 kPa and 50°C. The constant pressure heat capacity of air is 1.01 kJ/kg K. If 15 kg/min of air are to be compressed, determine the power require- ment of the compressor. State your assumptions. (12.625 kW)
A two-part compressor operates with steady state conditions. The exit of the first part of the...
A two-part compressor operates with steady state conditions. The exit of the first part of the compressor is also the inlet of the second part of the compressor. In the first part of the compressor, air is compressed from 1.5 bar, 350 K to 5.5 bar with a mass flow rate of 7.2 kg/sec. In the second part of the compressor, air is compressed from 5.5 bar to 9.5 bar with a mass flow rate of 5.8 kg/sec. Each unit...
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar...
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar and 25°C to 6.5 bar and 120°C. The compressor rejects 0.5 kJ as heat to the surrounding at 293K. Calculate: 1.     The enthalpy change of the gas (in kJ) 2.     The entropy change of the gas (in J.mol-1) 3.     The work required for the compression (in kJ) 4.     The ideal work of the process (in kJ) 5.     The thermodynamic efficiency The lost work (in kJ)
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 =...
Carbon dioxide (CO2) is compressed in a piston–cylinder assembly from p1 = 0.7 bar, T1 = 280 K to p2 = 14 bar. The initial volume is 0.2 m3. The process is described by pV1.25 = constant. Assuming ideal gas behavior and neglecting kinetic and potential energy effects, determine the work and heat transfer for the process, each in kJ, using constant specific heats evaluated at 300 K, and data from Table A-23.
Air enters a length of constant area pipe with p1 = 490 kPa (abs), T1 =...
Air enters a length of constant area pipe with p1 = 490 kPa (abs), T1 = 450 K, and V1 = 130 m/s. The diameter of the pipe is 0.1 m. If 480 kW of energy is added to the air by frictionless heat transfer between sections (1) and (2), determine p2, T2, and V2.