Question

Prove 4-C Theorem for a planar graph with no 3-cycles.

Prove 4-C Theorem for a planar graph with no 3-cycles.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that every connected planar graph with less than 12 vertices can be 4-colored
Prove that every connected planar graph with less than 12 vertices can be 4-colored
Prove or disprove the following: (a) Every 3-regular planar graph has a 3-coloring. (b) If ?=(?,?)...
Prove or disprove the following: (a) Every 3-regular planar graph has a 3-coloring. (b) If ?=(?,?) is a 3-regular graph and there exists a perfect matching of ?, then there exists a set of edges A⊆E such that each component of G′=(V,A) is a cycle
Graph G is a connected planar graph with 1 face. If G is finite, prove that...
Graph G is a connected planar graph with 1 face. If G is finite, prove that there is a vertex with degree 1.
Prove that you can decompose every planar graph into two bipartite graphs.
Prove that you can decompose every planar graph into two bipartite graphs.
Let G be a connected planar graph with 3 or more vertices which is drawn in...
Let G be a connected planar graph with 3 or more vertices which is drawn in the plane. Let ν, ε, and f be as usual. a) Use P i fi = 2ε to show that f ≤ 2ε 3 . b) Prove that ε ≤ 3ν − 6. c) Use b) to show that K5 is not planar.
Use proof by induction to prove that every connected planar graph with less than 12 vertices...
Use proof by induction to prove that every connected planar graph with less than 12 vertices has a vertex of degree at most 4.
Suppose we are going to color the vertices of a connected planar simple graph such that...
Suppose we are going to color the vertices of a connected planar simple graph such that no two adjacent vertices are with the same color. (a) Prove that if G is a connected planar simple graph, then G has a vertex of degree at most five. (b) Prove that every connected planar simple graph can be colored using six or fewer colors.
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that...
GRAPH THEORY: Let G be a graph which can be decomposed into Hamilton cycles. Prove that G must be k-regular, and that k must be even. Prove that if G has an even number of vertices, then the edge chromatic number of G is Δ(G)=k.
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m...
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m <=3n-6; b) Prove that G has a vertex of degree <=4. Solution: (a) simple --> bdy >=3. So 3m - 3n + 6 = 3f <= sum(bdy) = 2m --> m - 3n + 6 <=0 --> m <= 3n - 6. So for part a, how to get bdy >=3 and 2m? I need a detailed explanation b) Assume all deg >= 5...
Prove that if the complete graph Kn can be decomposed into 5-cycles (i.e., each edge of...
Prove that if the complete graph Kn can be decomposed into 5-cycles (i.e., each edge of Kn appears in exactly one of the 5-cycles of the decomposition), then n-1 or n-5 is divisiable by 10.