Question

Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...

Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there...
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there exists C>0 such that abs(x_n) is less than or equal to C for all n in naturals
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with...
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with a formal proof, clearly and neatly: a) Xn = n2/(2n2+1) b) Xn = (-1)n/(n+1) c) Xn = sin(n)/(n2+1)
Prove that every bounded sequence has a convergent subsequence.
Prove that every bounded sequence has a convergent subsequence.
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1)...
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1) for n > 0. Prove that limn→∞ xn = x exists and find its value.
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem...
1.- Prove the following: a.- Apply the definition of convergent sequence, Ratio Test or Squeeze Theorem to prove that a given sequence converges. b.- Use the Divergence Criterion for Sub-sequences to prove that a given sequence does not converge. Subject: Real Analysis