Question

Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...

Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there...
If (x_n) is a convergent sequence prove that (x_n) is bounded. That is, show that there exists C>0 such that abs(x_n) is less than or equal to C for all n in naturals
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
) Let α be a fixed positive real number, α > 0. For a sequence {xn},...
) Let α be a fixed positive real number, α > 0. For a sequence {xn}, let x1 > √ α, and define x2, x3, x4, · · · by the following recurrence relation xn+1 = 1 2 xn + α xn (a) Prove that {xn} decreases monotonically (in other words, xn+1 − xn ≤ 0 for all n). (b) Prove that {xn} is bounded from below. (Hint: use proof by induction to show xn > √ α for all...
Prove or disprove that if (xn) is an unbounded sequence in R, then there exists n0...
Prove or disprove that if (xn) is an unbounded sequence in R, then there exists n0 belongs to N so that xn is greater than 10^7 for all n greater than or equal to n0
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N,...
Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N, there exists a k ≥ M and an n ≥ M such that xk < 0 and xn > 0. Using simply the definition of a Cauchy sequence and of a convergent sequence, show that the sequence converges to 0.
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with...
For Xn given by the following, prove the convergence or divergence of the sequence (Xn) with a formal proof, clearly and neatly: a) Xn = n2/(2n2+1) b) Xn = (-1)n/(n+1) c) Xn = sin(n)/(n2+1)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT