Question

A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for...

A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for the system is 30√5 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 ​m/sec, what is the maximum displacement from equilibrium that it will​ attain?

​(Type an exact​ answer, using radicals as​ needed.)

Homework Answers

Answer #1

Problem in answer then comment below. I will help you..

.

Please thumbs up for this solution. Thanks..

.

In last image , i provide you answer in 2 form... First one exact value and other is approximated decimal value...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4kg mass is attached to a spring with stiffness 80 N/m. The damping constant for...
A 4kg mass is attached to a spring with stiffness 80 N/m. The damping constant for the system is 16sqrt(5) N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 4 m/sec, what is the maximum displacement from equilibrium that is will attain? The maximum displacement is [ ] meters. Type an exact answer, using radicals as needed
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant for the spring is 16\sqrt{3} N - sec/m. If the mas is pulled 30 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain?
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for...
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for the system is 6 ​N-sec/m. If the mass is moved 3/4 m to the left of equilibrium and given an initial rightward velocity of 1 ​m/sec, determine the equation of motion of the mass y(t) = and give its damping​ factor, quasiperiod, and quasifrequency.
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for the system is 6 N-sec/m. If the mass is moved 12/5 m to the left of equilibrium and given an initial rightward velocity of 62/5 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t)= The damping factor is: The quasiperiod is: The quasifrequency is:
A spring-mass-dashpot system has a mass of 1 kg and its damping constant is 0.2 N−Sec...
A spring-mass-dashpot system has a mass of 1 kg and its damping constant is 0.2 N−Sec m . This mass can stretch the spring (without the dashpot) 9.8 cm. If the mass is pushed downward from its equilibrium position with a velocity of 1 m/sec, when will it attain its maximum displacement below its equilibrium?
A 2kg mass is attached to a spring with stiffness k = 8π2N/m. The mass is...
A 2kg mass is attached to a spring with stiffness k = 8π2N/m. The mass is displaced 1m to the right of the equilibrium and given a velocity of 2π m/sec to the right. No damping and no external for are assumed. (a) Find the period and the frequency of the motion (with appropriate units). (b) Write the displacement y(t) of the mass in phase-amplitude form (every computation must be shown). (c) What is the maximum displacement from the equilibrium...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched...
A mass m is attached to a spring with stiffness k=25 N/m. The mass is stretched 1 m to the left of the equilibrium point then released with initial velocity 0. Assume that m = 3 kg, the damping force is negligible, and there is no external force. Find the position of the mass at any time along with the frequency, amplitude, and phase angle of the motion. Suppose that the spring is immersed in a fluid with damping constant...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT