Question

Assume a, b ∈ Z and p is prime. Using B´ezout’s identity, prove that if p...

Assume a, b ∈ Z and p is prime. Using B´ezout’s identity, prove that if p | ab, then p | a or p | b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the...
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the additative identity is 1? (b) what is the multipicative identity? (Make sure you proe that your claim is true). (c) Prove that the ring is commutative. (d) Prove that the ring is an integral domain. (Abstrat Algebra)
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
Let p be a prime. (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1...
Let p be a prime. (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1 subgroups of order p. (b) How many subgroups of order p does Z/pZ ⊕ Z/pZ ⊕ Z/pZ have? Can you generalize further? Explain.
Prove the following identity on languages A, B, C: A(B ∪ C) = AB ∪ AC...
Prove the following identity on languages A, B, C: A(B ∪ C) = AB ∪ AC Find a counterexample to the following identity on languages A, B: A* ∩ B* = (A∩B)*
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Let b be a primitive root for the odd prime p. Prove that b^k is a...
Let b be a primitive root for the odd prime p. Prove that b^k is a primitive root for p if and only if gcd(k, p − 1) = 1.
For p prime prove U(p) is cyclic
For p prime prove U(p) is cyclic
Suppose that p is a prime. Prove that p | a if and only if p...
Suppose that p is a prime. Prove that p | a if and only if p | a^2
For a and b relatively prime, prove that the largest k for which ax + by...
For a and b relatively prime, prove that the largest k for which ax + by = k with x and y non-negative integers has no solution is k = ab - a - b.