Question

Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...

Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).

Homework Answers

Answer #1

Parametererized surface and tangent plane

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let P = (a cos θ, b sin θ), where θ is not a multiple...
3. Let P = (a cos θ, b sin θ), where θ is not a multiple of π/2 be a point on the ellipse (x 2/ a2 )+ (y 2/ b 2) = 1, where a ≥ b > 0; and let P1 = (a cos θ, a sin θ) the corresponding on the circle x 2 /a2 + y 2/ a2 = 1. Prove that the tangent to the ellipse at P and the tangent to the circle at...
Compute equations of tangent plane and normal line to the surface z = x cos (x+y)...
Compute equations of tangent plane and normal line to the surface z = x cos (x+y) at point (π/2, π/3, -√3π/4).
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz...
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz where C is the curve r(t) = sin(t), cos(t), sin(2t) , 0 ≤ t ≤ 2π. (Hint: Observe that C lies on the surface z = 2xy.) C F · dr =
Find the tangent plane to the surface z = cos(xy) when (x, y) = (π, 0).
Find the tangent plane to the surface z = cos(xy) when (x, y) = (π, 0).
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you...
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you find E[X], E[Y], and E[XY]? clearly, x and y are not independent I think E[X] = E[Y] = 0 but how do you find E[XY]?
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
An implicitly defined function of x, y and z is given along with a point P...
An implicitly defined function of x, y and z is given along with a point P that lies on the surface: sin(xy) + cos(yz) = 0, at P = (2, π/12, 4) Use the gradient ∇F to: (a) find the equation of the normal line to the surface at P. (b) find the equation of the plane tangent to the surface at P.
We are given a level surface F ( x , y , z ) = 0...
We are given a level surface F ( x , y , z ) = 0 where F ( x , y , z ) = x^3 - y^2 + z^4 - 20 . Find the equation of the tangent plane to the surface at the point P ( 2 , 2 , 2 ) . Write the final answer in the form a x + b y + c z + d = 0