Question

Let F be the set of all finite languages over alphabet {0, 1}. Show that F...

Let F be the set of all finite languages over alphabet {0, 1}. Show that F is countable

Homework Answers

Answer #1

please give likes...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How do we know that the number of languages over a finite alphabet are uncountable?
How do we know that the number of languages over a finite alphabet are uncountable?
Q2 [10 pts] Give DFA's accepting the following languages over the alphabet {0,1}: a) The set...
Q2 [10 pts] Give DFA's accepting the following languages over the alphabet {0,1}: a) The set of all strings whose 3rd symbol from the right end is a 0. b) The set of strings such that the number of 0's is divisible by 3 and the number of 1's divisible by 2.
1. Define a deterministic finite automaton over the alphabet {a, b} which accepts the set of...
1. Define a deterministic finite automaton over the alphabet {a, b} which accepts the set of all strings that end with the substring ab or ba.
Which one of the following languages over the alphabet {0,1} is described by the regular expression...
Which one of the following languages over the alphabet {0,1} is described by the regular expression (0+1)* 0 (0+1)* 0 (0+1)* ? a.The set of all strings that begin and end with either 0 or 1 b.The set of all strings containing at most two zeros c.The set of all strings containing at least two zeros. d.The set of all strings containing the substring 00
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
Let A be a finite set and let f be a surjection from A to itself....
Let A be a finite set and let f be a surjection from A to itself. Show that f is an injection. Use Theorem 1, 2 and corollary 1. Theorem 1 : Let B be a finite set and let f be a function on B. Then f has a right inverse. In other words, there is a function g: A->B, where A=f[B], such that for each x in A, we have f(g(x)) = x. Theorem 2: A right inverse...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Please answer True or False on the following: 1. Let L be a set of strings...
Please answer True or False on the following: 1. Let L be a set of strings over the alphabet Σ = { a, b }. If L is infinite, then L* must be infinite (L* is the Kleene closure of L) 2. Let L be a set of strings over the alphabet Σ = { a, b }. Let ! L denote the complement of L. If L is finite, then ! L must be infinite. 3. Let L be...
Let swap_every_two be an operation on languages that is defined as follows: swap_every_two(L) = {a2a1a4a3 ....
Let swap_every_two be an operation on languages that is defined as follows: swap_every_two(L) = {a2a1a4a3 . . . a2na2n−1 | a1a2a3a4 . . . a2n−1a2n ∈ L where a1, . . . , a2n ∈ Σ} In this definition, Σ is the alphabet for the language L. 1. What languages result from applying swap every two to the following languages: (a) {1 n | n ≥ 0}, where the alphabet is {1}. (b) {(01)n | n ≥ 0}, where the...
Let A be a finite set and f a function from A to A. Prove That...
Let A be a finite set and f a function from A to A. Prove That f is one-to-one if and only if f is onto.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT