Question

Prove that if Ax=b and Ax=c are consistent, then so is Ax=b+c. Create and prove a...

Prove that if Ax=b and Ax=c are consistent, then so is Ax=b+c. Create and

prove a generalization of this result.

Homework Answers

Answer #1

by using matrix property I am proved this

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that T : R 3 → P2 defined by T(a, b, c) = ax^2 +...
Prove that T : R 3 → P2 defined by T(a, b, c) = ax^2 + bx + c yields a vector space isomorphism
For a and b relatively prime, prove that the largest k for which ax + by...
For a and b relatively prime, prove that the largest k for which ax + by = k with x and y non-negative integers has no solution is k = ab - a - b.
Prove that the following arguments are invalid. 1. (∃x) (Ax * ~Bx) 2. (∃x) (Ax *...
Prove that the following arguments are invalid. 1. (∃x) (Ax * ~Bx) 2. (∃x) (Ax * ~Cx) 3. (∃x) ( ~Bx * Dx) / (∃x) [Ax *(~Bx * Dx)]
Prove that n is prime iff every linear equation ax ≡ b mod n, with a...
Prove that n is prime iff every linear equation ax ≡ b mod n, with a ≠ 0 mod n, has a unique solution x mod n.
(a) Prove [A, bB+cC] = b[A, B]+c[A, C], where b and c are constants. (b) Prove...
(a) Prove [A, bB+cC] = b[A, B]+c[A, C], where b and c are constants. (b) Prove [AB, C] = A[B, C] +[A, C]B. (c) Use the last relation to work out the commutator [x^2 , p], given that [x, p] = i¯h. (d) Work out the result of [x 2 , p]f(x) directly, by computing the effect of the operators on f(x), and confirm that this agrees with your answer to (c). [12]
Is {(a, b, c, d)∈Q4:a^5=b^5} a subspace of Q4? If so, prove it; if not, show...
Is {(a, b, c, d)∈Q4:a^5=b^5} a subspace of Q4? If so, prove it; if not, show why not. Q is the set of all rational numbers
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then...
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then the equation ax+b=c has a unique solution. (b) If R is a commutative ring and x1,x2,...,xn are independent variables over R, prove that R[x σ(1),x σ (2),...,x σ (n)] is isomorphic to R[x1,x2,...,xn] for any permutation σ of the set {1,2,...,n}
create a word statement for the following probability event: A n B n C (so a...
create a word statement for the following probability event: A n B n C (so a intersects b intersects c)
Prove that for every x ∈ R \ Q, the set Ax = {qx | q...
Prove that for every x ∈ R \ Q, the set Ax = {qx | q ∈ Q} is dense in R. please prove with dense property.
2. Prove that every consistent heuristic is also admissible.
2. Prove that every consistent heuristic is also admissible.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT