Question

Derive an integral equation corresponding to y''(x)-y(x)=0 y(1) = 1, y(-1) = 1 (a) by integrating...

Derive an integral equation corresponding to

y''(x)-y(x)=0

y(1) = 1, y(-1) = 1

(a) by integrating twice.

(b by forming the Green's function.

Homework Answers

Answer #1


Please like if u helps you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An integral equation is an equation that contains an unknown function y(x) and an integral that...
An integral equation is an equation that contains an unknown function y(x) and an integral that involves y(x). Solve the given integral equation. [Hint: Use an initial condition obtained from the integral equation.] y(x) = 2 + x [t − ty(t)] dt 6
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o...
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o the equation in the form u=u(x). find the general solution of the equation.
Calculate integral from 0 to ∞ dx/ ((1 + x2) ^2) (by integrating the function 1...
Calculate integral from 0 to ∞ dx/ ((1 + x2) ^2) (by integrating the function 1 (1 + z 2) 2 around the upper half-circle of radius R, centered at 0, and letting R → ∞.)
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
obtain the green's function for the boundary value problem y''+y = f(x), y(0)=y(1)=0
obtain the green's function for the boundary value problem y''+y = f(x), y(0)=y(1)=0
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi  ...
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi   b). Find dy/dx for tthe following integral y=Integral from 0 to sine^-1 (x) cosine t dt
Find an integrating factor and solve the O.D.E. 1 + (x/y − sin(y) *dy/dx = 0.
Find an integrating factor and solve the O.D.E. 1 + (x/y − sin(y) *dy/dx = 0.
Solve the following equation using integrating factor. y dx + (2x − ye^y) dy = 0
Solve the following equation using integrating factor. y dx + (2x − ye^y) dy = 0
Apply Euler's method twice to approximate the solution of the equation y'=y-x-1, y(0)=1 at x=0.5. Use...
Apply Euler's method twice to approximate the solution of the equation y'=y-x-1, y(0)=1 at x=0.5. Use h=0.1. a. y(0.5)=1.089 b. y(0.5)=0.579 c. y(0.5)=1.534 d. y(0.5)=0.889
test if the equation ((x^4)(y^2) - y)dx + ((x^2)(y^4) - x)dy = 0 is exact. If...
test if the equation ((x^4)(y^2) - y)dx + ((x^2)(y^4) - x)dy = 0 is exact. If it is not exact, try to find an integrating factor. after the equation is made exact, solve by looking for integrable combinations
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT