Question

Prove that if a vector space V has a basis consisting of n vectors, then any...

Prove that if a vector space V has a basis consisting of n vectors, then any spanning set must contain at least n vectors.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be a vector space with dimV = n. Show that : Any spanning set...
Let V be a vector space with dimV = n. Show that : Any spanning set for V consisting of exactly n vectors is a basis for V.
Let V be a vector space of dimension n > 0, show that (a) Any set...
Let V be a vector space of dimension n > 0, show that (a) Any set of n linearly independent vectors in V forms a basis. (b) Any set of n vectors that span V forms a basis.
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
Suppose we have a vector space V of dimension n. Let R be a linearly independent...
Suppose we have a vector space V of dimension n. Let R be a linearly independent set with order n−2. Let S be a spanning set with order n+ 2. Outline a strategy to extend R to a basis for V. Outline a strategy to pare down S to a basis for V .
Prove that any set of vectors in R^n that contains the vector zero is linearly dependent.
Prove that any set of vectors in R^n that contains the vector zero is linearly dependent.
PROVE: If S = ~s1, . . . , ~sm is a system of vectors and...
PROVE: If S = ~s1, . . . , ~sm is a system of vectors and B = ~v1, . . . , ~vn is a spanning system of a vector space V , then if every ~vi ∈ B can be written as a linear combination of elements from S, then S is also a spanning system of a vector space V .