Question

Let S be the set of real numbers between 0 and 1, inclusive; i.e. S =...

Let S be the set of real numbers between 0 and 1, inclusive; i.e. S = [0, 1]. Let T be the set of real numbers between 1 and 3 inclusive (i.e. T = [1, 3]). Show that S and T have the same cardinality.

Homework Answers

Answer #1

Two sets A and B have the same cardinality iff there exists a bijection from one onto the other.

The solution has been obtained by exhibiting an explicit bijection from S onto T. A pictorial representation showing such a bijection has been provided. Loosely speaking, every point on the interval [0,1] is related to a unique point on [1,3] via the bijection. The endpoints of S are mapped onto the corresponding endpoints of T.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
Prove: Let S be a bounded set of real numbers and let a > 0. Define...
Prove: Let S be a bounded set of real numbers and let a > 0. Define aS = {as : s ∈ S}. Show that inf(aS) = a*inf(S).
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove...
1. (a) Let S be a nonempty set of real numbers that is bounded above. Prove that if u and v are both least upper bounds of S, then u = v. (b) Let a > 0 be a real number. Define S := {1 − a n : n ∈ N}. Prove that if epsilon > 0, then there is an element x ∈ S such that x > 1−epsilon.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of nonnegative real numbers.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of non-negative real numbers.
If we let N stand for the set of all natural numbers, then we write 6N...
If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.
Let R be the relation on the set of real numbers such that xRy if and...
Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is, |x − y| < 1. Which of the following pair or pairs can be used as a counterexample to show this relation is not an equivalence relation? A) (1, 1) B) (1, 1.8), (1.8, 3) C) (1, 1), (3, 3) D) (1, 1), (1, 1.5)
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). • u ⊕ v = (u1 + v1 + 1, u2 + v2 + ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the additive inverse −u for u = (u1, u2). Note:...
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT