Question

If a bounded sequence is the sum of a monotone increasing and a monotone decreasing sequence...

If a bounded sequence is the sum of a monotone increasing and a monotone decreasing sequence (xn = yn + zn where {yn} is monotone increasing and { zn} is monotone decreasing) does it follow that the sequence converges? What if {yn} and {zn} are bounded?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the sequence is increasing, decreasing, or monotonic. Is the sequence bounded? an= 9n +...
Determine whether the sequence is increasing, decreasing, or monotonic. Is the sequence bounded? an= 9n + 1/n
Abel's test for ∑???? to converge requires: ∑?? converges ?? is bounded ?? is monotone. Does...
Abel's test for ∑???? to converge requires: ∑?? converges ?? is bounded ?? is monotone. Does it work it work if I claim: ∑???? converges if and only if, ∑?? converges, ?? is bounded, and ?? is monotone?
Show that a bounded decreasing sequence converges to its greatest lower bound.
Show that a bounded decreasing sequence converges to its greatest lower bound.
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence,...
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if (an) has an unbounded subsequence.
Let the nth term of a sequence be given by an = sin(n2)/n for n ≥...
Let the nth term of a sequence be given by an = sin(n2)/n for n ≥ 1. 1. Is the sequence bounded? If so, by what values? 2. Is the sequence eventually monotone? If so, for what value of N is {an}∞n=N monotone? 3. Is the sequence increasing? Decreasing?
1) if a sequence is monotone decreasing and greater than 0 for all values of n...
1) if a sequence is monotone decreasing and greater than 0 for all values of n (n=1 to infinity) then the sequence must converge. True or false? 2) In order for infinite series k=1 to infinity (ak + bk) = series ak + series bk, both series must converge. True or false? 3) Let f(x) be a continuous decreasing function where f(k) = ak. If integral 1 to infinity f(x) = 5, what can we conclude about series ak? -series...
Problem 1 Let {an} be a decreasing and bounded sequence. Prove that limn→∞ an exists and...
Problem 1 Let {an} be a decreasing and bounded sequence. Prove that limn→∞ an exists and equals inf{an}.
construct an example of sequence of functions that the family of such function is uniformly bounded...
construct an example of sequence of functions that the family of such function is uniformly bounded but does not have subsequence that converges uniformly, with detail proof.
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes...
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes to infinity. Show that for all, n in N (naturals), xn < x. Formulate and prove an analogous result for a non-increasing sequences.
Let {Xn} be a sequence of random variables that follow a geometric distribution with parameter λ/n,...
Let {Xn} be a sequence of random variables that follow a geometric distribution with parameter λ/n, where n > λ > 0. Show that as n → ∞, Xn/n converges in distribution to an exponential distribution with rate λ.