Question

Let (X , X) be a measurable space. Show that f : X → R is...

Let (X , X) be a measurable space. Show that f : X → R is measurable if
and only if {x ∈ X : f(x) > r} is measurable for every r ∈ Q.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Let (X,M) be a measurable space, let µ, ν be two finite measures on this space,...
Let (X,M) be a measurable space, let µ, ν be two finite measures on this space, and let E ∈ M be such that µ(E) > ν(E). Then show that there exists P ∈ M with P ⊆ E such that µ(P) > ν(P) and µ(F) ≥ ν(F) for every F ∈ M with F ⊆ P.
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for...
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for almost every x. Prove that the integral of f dx ≤ Integral of g dx.
Let f be a function with measurable domain D. Then f is measurable if and only...
Let f be a function with measurable domain D. Then f is measurable if and only if the function g(x)={f(x) if x\in D ,0 if x \notin D } is measurable.
Let X be a set and A a σ-algebra of subsets of X. (a) A function...
Let X be a set and A a σ-algebra of subsets of X. (a) A function f : X → R is measurable if the set {x ∈ X : f(x) > λ} belongs to A for every real number λ. Show that this holds if and only if the set {x ∈ X : f(x) ≥ λ} belongs to A for every λ ∈ R. (b) Let f : X → R be a function. (i) Show that if...
Let R = R[x], f ∈ R \ {0}, and I = (f). Show that R/I...
Let R = R[x], f ∈ R \ {0}, and I = (f). Show that R/I is a real vector space of dimension equal to deg(f).
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that the set of points x ∈ R such that F(y) ≤ F(x) ≤ F(z) for all y ≤ x and z ≥ x is Borel set.
Let R = R[x], f ∈ R \ {0}, and I = (f). Show that R/I...
Let R = R[x], f ∈ R \ {0}, and I = (f). Show that R/I is an integral domain if and only if f is an irreducible polynomial.
Let R be a ring. Show that R[x] is a finitely generated R[x]-module if and only...
Let R be a ring. Show that R[x] is a finitely generated R[x]-module if and only if R={0}. Show that Q is not a finitely generated Z-module.
(IMT 1.1.6).Let E,F⊆R^d be Jordan measurable sets. 1. (Monotonicity) Show that if E⊆F, then m(E)≤m(F). 2....
(IMT 1.1.6).Let E,F⊆R^d be Jordan measurable sets. 1. (Monotonicity) Show that if E⊆F, then m(E)≤m(F). 2. (Finite subadditivity) Show that m(E∪F)≤m(E) +m(F). 3. (Finite additivity) Show that if E and Fare disjoint, then m(E∪F) =m(E) +m(F).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT