Question

We denote |S| the number of elements of a set S. (1) Let A and B...

We denote |S| the number of elements of a set S. (1) Let A and B be two finite sets. Show that if A ∩ B = ∅ then A ∪ B is finite and |A ∪ B| = |A| + |B| . Hint: Given two bijections f : A → N|A| and g : B → N|B| , you may consider for instance the function h : A ∪ B → N|A|+|B| defined as h (a) = f (a) if a ∈ A g (a) + |A| if a ∈ B. (2) Let A and B be two finite sets (not necessarily disjoint). Show that A ∪ B is finite. Hint: It may be useful to show that A∪B = A∪(B\A) and A∩(B\A) = ∅.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
1)Let the Universal Set, S, have 97 elements. A and B are subsets of S. Set...
1)Let the Universal Set, S, have 97 elements. A and B are subsets of S. Set A contains 45 elements and Set B contains 18 elements. If Sets A and B have 1 elements in common, how many elements are in A but not in B? 2)Let the Universal Set, S, have 178 elements. A and B are subsets of S. Set A contains 72 elements and Set B contains 95 elements. If Sets A and B have 39 elements...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
Let (X, d) be a metric space, and let U denote the set of all uniformly...
Let (X, d) be a metric space, and let U denote the set of all uniformly continuous functions from X into R. (a) If f,g ∈ U and we define (f + g) : X → R by (f + g)(x) = f(x) + g(x) for all x in X, show that f+g∈U. In words,U is a vector space over R. (b)If f,g∈U and we define (fg) : X → R by (fg)(x) = f(x)g(x) for all x in X,...
6. Let S be a finite set and let P(S) denote the set of all subsets...
6. Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A ⊆ B. (a) Is this relation reflexive? Explain your reasoning. (b) Is this relation symmetric? Explain your reasoning. (c) Is this relation transitive? Explain your reasoning.
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
Let A be a finite set and let f be a surjection from A to itself....
Let A be a finite set and let f be a surjection from A to itself. Show that f is an injection. Use Theorem 1, 2 and corollary 1. Theorem 1 : Let B be a finite set and let f be a function on B. Then f has a right inverse. In other words, there is a function g: A->B, where A=f[B], such that for each x in A, we have f(g(x)) = x. Theorem 2: A right inverse...
Let n be a positive integer and let S be a subset of n+1 elements of...
Let n be a positive integer and let S be a subset of n+1 elements of the set {1,2,3,...,2n}.Show that (a) There exist two elements of S that are relatively prime, and (b) There exist two elements of S, one of which divides the other.
We denote {0, 1}n by sequences of 0’s and 1’s of length n. Show that it...
We denote {0, 1}n by sequences of 0’s and 1’s of length n. Show that it is possible to order elements of {0, 1}n so that two consecutive strings are different only in one position
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is...
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is the set containing the elements that are in both A and B. That is, A ∩ B = {x : x ∈ A and x ∈ B}. Two sets A and B are disjoint if they have no elements in common. That is, if A ∩ B = ∅. Given two sets A and B, the union of these sets, denoted A ∪ B,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT