Question

Prove that S={1,1/4,1/8,1/16,...16,...} is countable

Prove that S={1,1/4,1/8,1/16,...16,...} is countable

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the Huffman encoding of a source with probabilities 1/3,1/4,1/6,1/8,1/12,1/24. Compare the average word length to...
Determine the Huffman encoding of a source with probabilities 1/3,1/4,1/6,1/8,1/12,1/24. Compare the average word length to the entropy of the source.
Prove whether or not the set ? is countable. a. ? = [0, 0.001) b. ?...
Prove whether or not the set ? is countable. a. ? = [0, 0.001) b. ? = ℚ x ℚ I do not really understand how to prove S is countable.
Use the fact that “countable union of disjoint countable sets is countable" to prove “the set...
Use the fact that “countable union of disjoint countable sets is countable" to prove “the set of all polynomials with rational coefficients must be countable.”
Prove the union of a finite collection of countable sets is countable.
Prove the union of a finite collection of countable sets is countable.
Prove that a countable union of countable sets countable; i.e., if {Ai}i∈I is a collection of...
Prove that a countable union of countable sets countable; i.e., if {Ai}i∈I is a collection of sets, indexed by I ⊂ N, with each Ai countable, then union i∈I Ai is countable. Hints: (i) Show that it suffices to prove this for the case in which I = N and, for every i ∈ N, the set Ai is nonempty. (ii) In the case above, a result proven in class shows that for each i ∈ N there is a...
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪...
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪ B is countable. b. Proposition: Every subset A ⊆ N is finite or countable. [Similarly if A ⊆ B with B countable.] c. Proposition: If N → A is a surjection, then A is finite or countable. [Or if countable B → A surjection.]
Show that the relation R={(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)} is an equivalence relation and contrust the associated directed graph.
Show that the relation R={(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)} is an equivalence relation and contrust the associated directed graph.
prove that the lebesgue measure on R has a countable basis
prove that the lebesgue measure on R has a countable basis
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a...
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a countable set is countable. c)every superset of a countable set is countable.
Find the interior and closure of each set . (a) [0,∞) (b) (1,1/2)∪(1/2,1/3)∪(1/3,1/4)∪(1/4,1/5)∪... (c){1 + 1/2...
Find the interior and closure of each set . (a) [0,∞) (b) (1,1/2)∪(1/2,1/3)∪(1/3,1/4)∪(1/4,1/5)∪... (c){1 + 1/2 + 1/3 +···+ 1/n:n∈N} (d){1 + 1/4 + 1/16 +···+ 1/4^n:n∈N}