Question

5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′...

5.1 Application of Linear Second Order ODE): Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c):

(a) Is there damping in the system? Why or why not?

(b) Is there resonance in the system? Why or why not?

(c) Solve the ODE.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t...
Consider the ‘spring-mass system’ represented by an ODE x′′ (t) + 16x(t) = 5 sin 4t with ICs: x(0) = 2, x′ (0) = 1. Answer the questions (a)–(c): (a) Is there damping in the system? Why or why not? (b) Is there resonance in the system? Why or why not? (c) Solve the ODE.
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x...
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x + ω2x = F0 cos(γt) dt2 where F0 and ω ̸= γ are constants. Without worrying about those constants, answer the questions (a)–(b). (a) Show that the general solution of the given ODE is [2 pts] x(t) := xc + xp = c1 cos(ωt) + c2 sin(ωt) + (F0 / ω2 − γ2) cos(γt). (b) Find the values of c1 and c2 if the...
.1.) Modelling using second order differential equations a) Find the ODE that models of the motion...
.1.) Modelling using second order differential equations a) Find the ODE that models of the motion of the dumped spring mass system with mass m=1, damping coefficient c=3, and spring constant k=25/4 under the influence of an external force F(t) = cos (2t). b) Find the solution of the initial value problem with x(0)=6, x'(0)=0. c) Sketch the graph of the long term displacement of the mass m.
Consider the following second order linear homogeneous ODE ?′′(?) − ??′(?) − ???(?) = ?, ?(?)...
Consider the following second order linear homogeneous ODE ?′′(?) − ??′(?) − ???(?) = ?, ?(?) = ?, ?′(?) = ?? Solve the equation using the characteristic equation Transform the equation into a system (by setting ?1(?) = ?, ?2(?) = ?′ ) and solve it again State the nature of the critical point ?0, plot he portrait and say if ?0 is stable, stable and attractive or unstable (justify your answers) Solve the equation using Laplace transform Compare the...
We consider a spring mass system. We use standard international system of units, the mass is...
We consider a spring mass system. We use standard international system of units, the mass is 1kg and the change of magnitude of force |∆Fs| (in unit of Newton, 1N = 1kg ∗ m/s2) from the spring is 9 times the change of length of the spring |∆x|(in meter), i.e |∆Fs| = |9∆x|, the spring is a linear spring with spring constant equal to 3 in Hook’s law. The equilibrium position is at x = 0. When the external forcing...
Consider a mass and spring system with a mass m = 1 kg, spring constant k...
Consider a mass and spring system with a mass m = 1 kg, spring constant k = 5 kg=s^2 , and damping constant b = 2 kg/s set up and the general solution of the system. Express the final answer in terms of cos and sin
consider a spring mass system with a damping force but no external force that has the...
consider a spring mass system with a damping force but no external force that has the following equation of motion. Find the damping constant c that gives the critical damping   x'+cx'+9x=0 x(0)=2 x'(0)=0
Consider a horizontal spring-mass vibration system without damping, where the mass is 2 kg, the spring...
Consider a horizontal spring-mass vibration system without damping, where the mass is 2 kg, the spring is 18 N/m, and the external force is a periodic force f(t) = 6sin(3t): a) Write the differential equation modeling the motion of this spring-mass system b) Solve the differential equation in (a). Show Work c) If at the initial time t = 0, the mass is at position 2 m to the right of the equilibrium position and its velocity is 1 m/s...
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with...
Consider an undamped spring with spring constant k = 9N/m and with a mass attached with mass 4kg. We apply a driving force of F(t) = sin(3t/2). Solve the IVP for the position of the mass x(t) with the string initially at rest at the equilibrium (so x(0) = 0 and ˙x(0) = 0). (Hint: Guess a particular solution of the form Ct cos(3t/2) and find the constant C.)
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f(t) = 4 sin(4t) is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s2 for the acceleration due to gravity.) What is x(t) ?...