Question

The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation , i)...

The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation ,

i) where f(t) denotes the forcing on the oscillator. (i) If x(0) = 0, dx dt (0) = 1, f(t) = 4t and the Laplace transform of x(t) is denoted X(s) = L[x(t)], then show that

X(s) = 1 /(s + 2)^2 + 4 /s^2 (s + 2)^2

ii) Hence find x(t)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
Python: We want to find the position, as a function of time, of a damped harmonic...
Python: We want to find the position, as a function of time, of a damped harmonic oscillator. The equation of motion is              m d2x/dt2 = -kx – b dx/dt,      x(0) = 0.5, dx/dt (0) = 0 Take m = 0.25 kg, k = 100 N/m, and b = 0.1 N.s/m. Solve x(t) for t in the interval [0, 10T], where T = 2π/ω, and ω2 = k/m. please write the code. Divide the interval into N = 104 intervals:...
This is about differential equations. Consider the equation for a damped oscillator with no external force....
This is about differential equations. Consider the equation for a damped oscillator with no external force. Then the equation becomes my’’ +by’ + ky = 0. Show that if y(t) is a solution to this equation, then cy(t) is a solution for any constant c. Also show that if y1(t) and y2(t) are solutions to this equation then c1y1(t) + c2y2(t) is also a solution for any c1 and c2.
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider...
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider the overdamped case (b/2m)^2 < k/m a. Find the steady state solution. b. Find the solution with initial conditions x(0)=0, x'(0)=0. c. Use a plotting program to plot your solution for m=1, k=0.1, b=1, Fo=0.25, and w=0.5.
Use the Laplace transform to solve the given system of differential equations. dx dt = −x...
Use the Laplace transform to solve the given system of differential equations. dx dt = −x + y dy dt = 2x x(0) = 0, y(0) = 2
Consider the following initial value problem: x′′−3x′−40x=sin(2t),x(0)=4,x′(0)=3 Using X for the Laplace transform of x(t), i.e.,...
Consider the following initial value problem: x′′−3x′−40x=sin(2t),x(0)=4,x′(0)=3 Using X for the Laplace transform of x(t), i.e., X=L{x(t)},, find the equation you get by taking the Laplace transform of the differential equation and solve for X(s)=
Transform the differential equation x2d2y/ dx2 − xdy/dx − 3y = x 1−n ln(x), x >...
Transform the differential equation x2d2y/ dx2 − xdy/dx − 3y = x 1−n ln(x), x > 0 to a linear differential equation with constant coefficients. Hence, find its complete solution using the D-operator method.
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
(a) Separate the following partial differential equation into two ordinary differential equations: Utt + 4Utx −...
(a) Separate the following partial differential equation into two ordinary differential equations: Utt + 4Utx − 2U = 0. (b) Given the boundary values U(0,t) = 0 and Ux (L,t) = 0, L > 0, for all t, write an eigenvalue problem in terms of X(x) that the equation in (a) must satisfy.
Find the particular solution of the differential equation that satisfies the initial condition(s). f "(x)=2, f...
Find the particular solution of the differential equation that satisfies the initial condition(s). f "(x)=2, f '(2) = 5, f(2)=10