Question

The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation , i)...

The position x(t), of a damped oscillator with forcing satisfies the ordinary differential equation ,

i) where f(t) denotes the forcing on the oscillator. (i) If x(0) = 0, dx dt (0) = 1, f(t) = 4t and the Laplace transform of x(t) is denoted X(s) = L[x(t)], then show that

X(s) = 1 /(s + 2)^2 + 4 /s^2 (s + 2)^2

ii) Hence find x(t)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
Python: We want to find the position, as a function of time, of a damped harmonic...
Python: We want to find the position, as a function of time, of a damped harmonic oscillator. The equation of motion is              m d2x/dt2 = -kx – b dx/dt,      x(0) = 0.5, dx/dt (0) = 0 Take m = 0.25 kg, k = 100 N/m, and b = 0.1 N.s/m. Solve x(t) for t in the interval [0, 10T], where T = 2π/ω, and ω2 = k/m. please write the code. Divide the interval into N = 104 intervals:...
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider...
Consider the driven damped harmonic oscillator m(d^2x/dt^2)+b(dx/dt)+kx = F(t) with driving force F(t) = FoSin(wt). Consider the overdamped case (b/2m)^2 < k/m a. Find the steady state solution. b. Find the solution with initial conditions x(0)=0, x'(0)=0. c. Use a plotting program to plot your solution for m=1, k=0.1, b=1, Fo=0.25, and w=0.5.
Use the Laplace transform to solve the given system of differential equations. dx dt = −x...
Use the Laplace transform to solve the given system of differential equations. dx dt = −x + y dy dt = 2x x(0) = 0, y(0) = 2
Consider the following initial value problem: x′′−3x′−40x=sin(2t),x(0)=4,x′(0)=3 Using X for the Laplace transform of x(t), i.e.,...
Consider the following initial value problem: x′′−3x′−40x=sin(2t),x(0)=4,x′(0)=3 Using X for the Laplace transform of x(t), i.e., X=L{x(t)},, find the equation you get by taking the Laplace transform of the differential equation and solve for X(s)=
Transform the differential equation x2d2y/ dx2 − xdy/dx − 3y = x 1−n ln(x), x >...
Transform the differential equation x2d2y/ dx2 − xdy/dx − 3y = x 1−n ln(x), x > 0 to a linear differential equation with constant coefficients. Hence, find its complete solution using the D-operator method.
Find the particular solution of the differential equation that satisfies the initial condition(s). f "(x)=2, f...
Find the particular solution of the differential equation that satisfies the initial condition(s). f "(x)=2, f '(2) = 5, f(2)=10
For the below ordinary differential equation with initial conditions, state the order and determine if the...
For the below ordinary differential equation with initial conditions, state the order and determine if the equation is linear or nonlinear. Then find the solution of the ordinary differential equation, and apply the initial conditions. Verify your solution. x^2/(y^2-1) dy/dx=(3x^3)/y, y(0)=2
Use Euler’s method to numerically solve the differential equation dx/dt=0.3x−10 for 0≤t≤3 given that x=40 when...
Use Euler’s method to numerically solve the differential equation dx/dt=0.3x−10 for 0≤t≤3 given that x=40 when t=0. Do not do any rounding. Work must be shown
Find the Laplace transform of the given function: f(t)=(t-3)u2(t)-(t-2)u3(t), where uc(t) denotes the Heaviside function, which...
Find the Laplace transform of the given function: f(t)=(t-3)u2(t)-(t-2)u3(t), where uc(t) denotes the Heaviside function, which is 0 for t<c and 1 for t≥c. Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n). L{f(t)}= _________________ , s>0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT