Question

Let ℙ1[0, 1] be the set of non-vertical lines (y = mx + b) restricted to...

Let ℙ1[0, 1] be the set of non-vertical lines (y = mx + b) restricted to [0, 1], with usual function
addition and scalar multiplication, and define the inner product:
< ? | ? > = ∫ ?? ?? 1
0 .
A) Find the length (using this inner product) of an arbitrary line y = mx + b.
B) Find the angle between L1: y = x + 2 and L2: y = 4 – x.
C) Find the distance between the above two lines.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the distance between the skew lines L1: x = 1 − t , y =...
Find the distance between the skew lines L1: x = 1 − t , y = 2 t , z = 2 + t L2:  x = -2 + s, y = 3 - s, z = -1 + 2s
Determine whether the lines l1: x = 2 + u, y = 1 + u, z...
Determine whether the lines l1: x = 2 + u, y = 1 + u, z = 4 + 7u and l2: x = -4 + 5w; y = 2 - 2w, z = 1 - 4w intersect, and if so, find the point of intersect, and the angles between the lines.
(a) Find the distance between the skew lines l1 and l2 given with the vector equations...
(a) Find the distance between the skew lines l1 and l2 given with the vector equations l1 : r1(t) = (1+t)i+ (1+6t)j+ (2t)k; l2 : r2(s) = (1+2s)i+ (5+15s)j+ (−2+6s)k. (b) Determine if the plane given by the Cartesian equation −x + 2z = 0 and the line given by the parametric equations x = 5 + 8t, y = 2 − t, z = 10 + 4t are orthogonal, parallel, or neither.
The line l1 has the direction vector h1,0,−1i and passes through the point (0,−1,−1). The line...
The line l1 has the direction vector h1,0,−1i and passes through the point (0,−1,−1). The line l2 passes through the points (1,2,3) and (1,3,2). a. [2] What is the angle between l1 and l2 in radians? The answer should lie between 0 and π/2. b. [6] What is the distance between l1 and l2?
Find the line determined by the intersecting lines. L1: x=-1+3t y=2+t z=1-2t L2: x=1-4s y=1+2s z=2-2s
Find the line determined by the intersecting lines. L1: x=-1+3t y=2+t z=1-2t L2: x=1-4s y=1+2s z=2-2s
B.) Let R be the region between the curves y = x^3 , y = 0,...
B.) Let R be the region between the curves y = x^3 , y = 0, x = 1, x = 2. Use the method of cylindrical shells to compute the volume of the solid obtained by rotating R about the y-axis. C.) The curve x(t) = sin (π t) y(t) = t^2 − t has two tangent lines at the point (0, 0). List both of them. Give your answer in the form y = mx + b ?...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 -...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 - 4t, z = 2 + t and L2: the intersection of the planes x + y + z =1 and 2x + y - 3z = 10
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2)...
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2) defines an inner product in P3. Use this inner product to find , ||p||, ||q||, and the angle θ between p(x) and q(x) for p(x)=2x^2+3 and q(x)=2x^2−6x.
Find the equation of the tangent line y=mx+b y=e2x+2x at x=0 m=??? n=???
Find the equation of the tangent line y=mx+b y=e2x+2x at x=0 m=??? n=???
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.