Question

Q1: Let T : Rm → Rn be any linear transformation, and denote by 0m the...

Q1: Let T : Rm → Rn be any linear transformation, and denote by 0m the origin of Rm, that is, this is the vector in Rm with all entries equal to zero. Show that T(0m) = 0n.

Q2: Give an example of two linear transformations of the plane such that the matrices that represent the transformations do not commute.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that any linear transformation ? : R? → R? maps a line passing through the...
Prove that any linear transformation ? : R? → R? maps a line passing through the origin to either the zero vector or a line passing through the origin. Generalize this for planes and hyperplanes. What are the images of these under linear transformations? (please be descriptive and explain any maps that you use to answer these questions)
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote the image of U under T (i.e., T(U)={T(u⃗ ):u⃗ ∈U}). Prove that T(U) is a subspace of W
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x,...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x, y , z) = ( x-2y -z , 2x + 4y - 2z) a give an example of two elements in K ev( T ) and show that these sum i also an element of K er( T)
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.