Question

Produce graphs of f that reveal all the important aspects of the curve. Then use calculus...

Produce graphs of f that reveal all the important aspects of the curve. Then use calculus to find the following. (Enter your answers using interval notation. Round your answers to two decimal places.)

f(x) = 4 sin(x) + cot(x), −π ≤ x ≤ π

Find the interval of increase.

Find the interval of decrease.

Find the inflection points of the function.

(x, y) = (smaller x-value)

(x, y) = (larger x-value)

Find the interval where the function is concave up.

Find the interval where the function is concave down.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Hi! I am asking this again because the first answer I got were all wrong. Sorry!...
Hi! I am asking this again because the first answer I got were all wrong. Sorry! Produce graphs of f that reveal all the important aspects of the curve. Then use calculus to find the following. (Enter your answers using interval notation. Round your answers to two decimal places.) f(x) = x5 − 5x4 − x3 + 28x2 − 2x a) Find the interval(s) of increase/decrease. b) Find the inflection points of the function. c) Find the interval(s) where the...
question number 1: Find the point of inflection of the graph of the function. (If an...
question number 1: Find the point of inflection of the graph of the function. (If an answer does not exist, enter DNE.) f(x) = x + 7 cos x, [0, 2π] (x, y) = DNE    (smaller x-value) (x, y) = DNE    (larger x-value) Describe the concavity. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) concave upward     DNE concave downward question number 2: Find the points of inflection of the graph of the...
Consider the function below. (If an answer does not exist, enter DNE.) f(x) = 1/2x^(4) −...
Consider the function below. (If an answer does not exist, enter DNE.) f(x) = 1/2x^(4) − 4x^(2) + 3 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection points. (x, y) = (smaller x-value) (x, y) =...
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 +...
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 + 8x3 + x4 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection points. (x, y)=(smaller x-value) (x, y)=(larger x-value) Find the...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^4− 50x^2...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^4− 50x^2 + 7 (a) Find the interval on which f is increasing. (Enter your answer using interval notation.)    Find the interval on which f is decreasing. (Enter your answer using interval notation.)    (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection points. (x, y) =    (smaller x-value) (x, y) =   ...
Consider the following function. (If an answer does not exist, enter DNE.) f(x) = 1 +...
Consider the following function. (If an answer does not exist, enter DNE.) f(x) = 1 + 5 x − 3 x2 (c) Find the local maximum and minimum values. (d) Find the interval where the function is concave up. (Enter your answer using interval notation.) (e) Find the interval where the function is concave down. (Enter your answer using interval notation.) (f) Find the inflection point. (x, y) =   
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 8 sin x sin y, −π < x < π, −π < y < π
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 7 sin x sin y,     −π < x < π,     −π < y < π
Calculate two iterations of Newton's Method to approximate a zero of the function using the given...
Calculate two iterations of Newton's Method to approximate a zero of the function using the given initial guess. (Round your answers to three decimal places.) 45. f(x) = x5 − 5,    x1 = 1.4 n xn f(xn) f '(xn) f(xn) f '(xn) xn − f(xn) f '(xn) 1 2 40. Find two positive numbers satisfying the given requirements. The product is 234 and the sum is a minimum. smaller value= larger value= 30.Determine the open intervals on which the graph is...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x > 0 (a) Find the critical numbers of f. (Enter your answers as a comma-separated list.) x = (b) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) increasing     decreasing   question#2: Consider the following function. f(x) = 2x + 1,     x ≤ −1 x2 − 2,     x...