Question

Given are V : 2x1 + 2x2 −x3 = 5 and W : x1 −x3 =...

Given are V : 2x1 + 2x2 −x3 = 5 and W : x1 −x3 = 0.

1. Calculate the angle between V and W
2. Determine, independent of each other, the equation of a paramater representation of the surface perpendicular on V and W through point (1,2,2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3=...
Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3= 1 2X1+ X2≤3 X2, X3 ≥0, X1 urs a) Find the standard form of the LP problem. b) Find the starting tableau to solve the Primal LP problem by using the M-Technique.
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual model b.) Given the information that the optimal basic variables are X1 and X3, determine the associated optimal dual solution.
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 >...
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 > 0 Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? (20 points)
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this...
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this linear program. Select all the correct objective function and constraints 1. min −y1−3y2 2. min −y1−3y2 3. y1+3y2≤2 4. −2y1−2y2≤2 5. 2y1+4y2≤4 6. y1,y2≤0
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2 Let A be the coefficient matrix and X the solution matrix to the system. Solve the system by first computing A−1 and then using it to find X. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3...
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3    2x1-x2+3x3>=4    x1,x2,x3>=0
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2...
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2 +x3 =3 Write a matrix equation that is equivalent to the system of linear equations. (b) Solve the system using the inverse of the coefficient matrix.
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 −...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 − 10x5 = −11 x1+2x2 − x3+3x5 = 4 1. Represent the system as an augmented matrix. 2. Reduce the matrix to row reduced echelon form. (This can be accomplished by hand or by MATLAB. No need to post code.) 3. Write the set of solutions as a linear combination of vectors in R5. (This must be accomplished by hand using the rref form found...
Use Gaussian elimination to solve the following system of linear equations. 2x1 -2x2​​​​​​​ -x3​​​​​​​ +6x4​​​​​​​ -2x5​​​=1...
Use Gaussian elimination to solve the following system of linear equations. 2x1 -2x2​​​​​​​ -x3​​​​​​​ +6x4​​​​​​​ -2x5​​​=1 x1 ​​​​​​​- x2​​​​​​​ +x3​​​​​​​ +2x4​​​​​​​ - x5​​​= 2 4x1 ​​​​​​​-4x2​​​​​​​ -5x3​​​​​​​ +7x4​​​​​​​ -x5​​​=6
Consider the problem max 4x1 + 2x2 s.t. x1 + 3x2 ≤ 5 (K) 2x1 +...
Consider the problem max 4x1 + 2x2 s.t. x1 + 3x2 ≤ 5 (K) 2x1 + 8x2 ≤ 12 (N) x1 ≥ 0, x2 ≥ 0 and the following possible market equilibria: i) x1 = 0, x2 = 3/2, pK = 0, pN = 1/4, ii) x1 = 1, x2 = 2, pK = 2, pN = 1, iii) x1 = 1, x2 = 2, pK = 4, pN = 0, iv) x1 = 5, x2 = 0, pK =...