Question

Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2)...

Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2) := (x1x2, y1+y2). Show that (V,⊕, .) is not a vector space.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = R^2 , < X1 , X2 > + < Y1 , Y2 > = < X1 + X2 , Y1 +Y2> c< X1 , X2...
Let V = W = R2. Choose the basis B = {x1, x2} of V ,...
Let V = W = R2. Choose the basis B = {x1, x2} of V , where x1 = (2, 3), x2 = (4,−5) and choose the basis D = {y1,y2} of W, where y1 = (1,1), y2 = (−3,4). Find the matrix of the identity linear mapping I : V → W with respect to these bases.
Show that the relation ∼ defined as (x1,y1) ∼ (x2,y2) ⇔ (x1) −(y1)2 = (x2 )−(y2)2...
Show that the relation ∼ defined as (x1,y1) ∼ (x2,y2) ⇔ (x1) −(y1)2 = (x2 )−(y2)2 is an equivalence relation on R2. Sketch equivalence classes of (0,1) and (1,1) Find a representative for each distinct equivalence class.
Show that Mm,n with standard addition and scalar multiplication is a vector space.
Show that Mm,n with standard addition and scalar multiplication is a vector space.
Let S ∈ L(R2) be given by S(x1, x2) = (x1 +x2, x2) and let I...
Let S ∈ L(R2) be given by S(x1, x2) = (x1 +x2, x2) and let I ∈ L(R2) be the identity operator. Using the inner product defined in problem 1 for the standard basis and the dot product, compute <S, I>, || S ||, and || I || {Inner product in problem 1: Let W be an inner product space and v1, . . . , vn a basis of V. Show that <S, T> = <Sv1, T v1> +...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = R, x + y = max( x , y ), cx=(c)(x) (usual multiplication.
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2)...
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2) iff y1 − sin x1 = y2 − sin x2 . Prove that ∼ is an equivalence relation. Find the classes [(0, 0)], [(2, π/2)] and draw them on the plane. Describe the sets which are the equivalence classes for this relation.
Consider the vector space M2x2 with the usual addition and scalar multiplication. Let it be the...
Consider the vector space M2x2 with the usual addition and scalar multiplication. Let it be the subspace of M2x2 defined as follows: H= { | a b | | c d |    with b= c} consider matrices A= | 1 2 |    B= |-2 2 |    C= | 1 8 |    | 1 3 | , | 1 -3 | ,    | 4 6 | Do they form a basis for H? justify the answer
Determine if W is a subspace of R^3 under the usual addition and scalar multiplication. Either...
Determine if W is a subspace of R^3 under the usual addition and scalar multiplication. Either show algebraically that it is or show how it isn't algebraically. W= {(x1, x2, x3) ∈ R^3 x1 = x2 and x2 = 2x3 }
Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition:...
Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition: (x1,y1)+(x2,y2)=(x1 +x2 +1, y1 +y2 +1) • Scalarmultiplication:a(x,y)=(ax+a−1, ay+a−1). Prove or disprove: With these operations, V is a vector space over R
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT