Question

($4.2 Reduction of Order): (a) Let y1(x) = x be a solution of the homogeneous ODE...

($4.2 Reduction of Order):
(a) Let y1(x) = x be a solution of the homogeneous ODE xy′′ −(x+2)y′ + ((x+2)/x)y = 0. Use the reduction

of order to find a second solution y2(x), and write the general solution.

Homework Answers

Answer #1

y_2(x)= xe^x

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx     (5) as instructed, to find a second solution y2(x). y'' + 36y = 0;    y1 = cos(6x) y2 = 2) The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx        (5) as instructed, to find a second solution y2(x). y'' + 64y = 0;    y1 = cos(8x) y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) ∫(e(−∫P(x) dx))/y12(x)dx (5) as instructed, to find a second solution y2(x).4x2y'' + y = 0; y1 = x1/2 ln(x) y2 = ?
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x)       dx (5) as instructed, to find a second solution y2(x). x2y'' -11xy' + 36y = 0; y1 = x6 y2 =
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' + 100y = 0; y1 = cos 10x I've gotten to the point all the way to where y2 = u y1, but my integral is wrong for some reason This was my answer y2= c1((sin(20x)+20x)cos10x)/40 + c2(cos(10x))
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method...
The indicated function y1(x) is a solution of the associated homogeneous differential equation. Use the method of reduction of order to find a second solution y2(x) and a particular solution of the given nonhomoegeneous equation. y'' − y'  = e^x y1 = e^x
let y1=e^x be a solution of the DE 2y''-5y'+3y=0 use the reduction of order method to...
let y1=e^x be a solution of the DE 2y''-5y'+3y=0 use the reduction of order method to find a second linearly independent solution y2 of the given DE
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order,...
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order, to find a second solution dx **Please do not solve this via the formula--please use the REDUCTION METHOD ONLY. y2(x)= ?? Given: y'' + 2y' + y = 0;    y1 = xe−x
the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula....
the indicated function y1(x) is a solution of the associated homogeneous equation.use reduction of order formula. 1. (1-x^2)y''+2xy'=0; y1=1 2. 16y''-24y'+9y=0; y1= e^3x/4
Follow the steps below to use the method of reduction of order to find a second...
Follow the steps below to use the method of reduction of order to find a second solution y2 given the following differential equation and y1, which solves the given homogeneous equation: xy" + y' = 0; y1 = ln(x) Step #1: Let y2 = uy1, for u = u(x), and find y'2 and y"2. Step #2: Plug y'2 and y"2 into the differential equation and simplify. Step #3: Use w = u' to transform your previous answer into a linear...