Question

n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....

n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M.

1. Show that the diagonal of an anti-symmetric matrix are zero

2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA.

3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric.

4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For an n×n matrix, A, the trace of A is defined as the sum of the...
For an n×n matrix, A, the trace of A is defined as the sum of the entries on the main diagonal. That is, tr(A)=a11+a22+?+ann. (a) Prove that for any matrices A and B having the same size, tr(A+B)=tr(A)+tr(B) and for any scalar c, tr(cA)=ctr(A) (b) Prove tr(A)=tr(AT) for all square matrices A. (c) Prove that for any matrices A and B having the same size, tr(AB)=tr(BA). (d) Using (c), prove that if A and B are similar tr(A)=tr(B).
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
1. If A is an n n matrix, prove that (a) ATA is a symmetric matrix....
1. If A is an n n matrix, prove that (a) ATA is a symmetric matrix. (b) A + AT is a symmetric matrix and A - AT is a skew-symmetric matrix. (c) A is the sum of a symmetric and a skew-symmetric matrix.
For the general case of n masses coupled by n +1 springs, the mass matrix M...
For the general case of n masses coupled by n +1 springs, the mass matrix M 1) is a (n+1) x (n+1) diagonal matrix (i.e. all off-diagonal elements are identically equal to zero). 2) is a (n+1) x (n+1) non-diagonal matrix (i.e it has non-zero off-diagonal elements). 3) is a (n) x (n) diagonal matrix (i.e. all off-diagonal elements are identically equal to zero). 4) is a (n) x (n) non-diagonal matrix (i.e it has non-zero off-diagonal elements).
Recall that if A is an m × n matrix and B is a p ×...
Recall that if A is an m × n matrix and B is a p × q matrix, then the product C = AB is defined if and only if n = p, in which case C is an m × q matrix. (a) Write a function M-file that takes as input two matrices A and B, and as output produces the product by columns of the two matrix. For instance, if A is 3 × 4 and B is...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
Let A, B be n × n matrices. The following are two incorrect proofs that ABhas...
Let A, B be n × n matrices. The following are two incorrect proofs that ABhas the same non-zero eigenvalues as BA. For each, state two things wrong with the proof: (i) We will prove that AB and BA have the same characteristic equation. We have that det(AB − λI) = det(ABAA−1 − λAA−1) = det(A(BA − λI)A−1) = det(A) + det(BA − λI) − det(A) = det(BA − λI) Hence det(AB − λI) = det(BA − λI), and so...
Prove the following statements: a) If A and B are two positive semidefinite matrices in IR...
Prove the following statements: a) If A and B are two positive semidefinite matrices in IR ^ n × n , then trace (AB) ≥ 0. If, in addition, trace (AB) = 0, then AB = BA =0 b) Let A and B be two (different) n × n real matrices such that R(A) = R(B), where R(·) denotes the range of a matrix. (1) Show that R(A + B) is a subspace of R(A). (2) Is it always true...
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m...
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m R^n is a linear transformation
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on...
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on its main diagonal. Let VV be the vector space of all 2×22×2 matrices with real entries. Let HH be the set of all 2×22×2 matrices with real entries that have trace 11. Is HH a subspace of the vector space VV? Does HH contain the zero vector of VV? choose H contains the zero vector of V H does not contain the zero vector...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT